Hyperuniform point patterns are characterized by vanishing infinitewavelength density fluctuations and encompass all crystal structures, certain quasi-periodic systems, and special disordered point patterns [S. Torquato and F. H. Stillinger, Phys. Rev. E 68, 041113 (2003)]. This article generalizes the notion of hyperuniformity to include also two-phase random heterogeneous media. Hyperuniform random media do not possess infinite-wavelength volume fraction fluctuations, implying that the variance in the local volume fraction in an observation window decays faster than the reciprocal window volume as the window size increases. For microstructures of impenetrable and penetrable spheres, we derive an upper bound on the asymptotic coefficient governing local volume fraction fluctuations in terms of the corresponding quantity describing the variance in the local number density (i.e., number variance). Extensive calculations of the asymptotic number variance coefficients are performed for a number of disordered (e.g., quasiperiodic tilings, classical "stealth" disordered ground states, and certain determinantal point processes), quasicrystal, and ordered (e.g., Bravais and non-Bravais periodic systems) hyperuniform structures in various Euclidean space dimensions, and our results are consistent with a quantitative order metric characterizing the degree of hyperuniformity. We also present corresponding estimates for the asymptotic local volume fraction coefficients for several lattice families. Our results have interesting implications for a certain problem in number theory. PACS numbers:arXiv:0910.2172v2 [cond-mat.stat-mech]
We show that quasi-long-range (QLR) pair correlations that decay asymptotically with scaling
Abstract.It is well known that one can map certain properties of random matrices, fermionic gases, and zeros of the Riemann zeta function to a unique point process on the real line R. Here we analytically provide exact generalizations of such a point process in d-dimensional Euclidean space R d for any d, which are special cases of determinantal processes. In particular, we obtain the n-particle correlation functions for any n, which completely specify the point processes in R d . We also demonstrate that spinpolarized fermionic systems in R d have these same n-particle correlation functions in each dimension. The point processes for any d are shown to be hyperuniform, i.e., infinite wavelength density fluctuations vanish, and the structure factor (or power spectrum) S(k) has a nonanalytic behavior at the origin given by S(k) ∼ |k| (k → 0). The latter result implies that the pair correlation function g 2 (r) tends to unity for large pair distances with a decay rate that is controlled by the power law 1/r d+1 , which is a well-known property of bosonic ground states and more recently has been shown to characterize maximally random jammed sphere packings. We graphically display one-and two-dimensional realizations of the point processes in order to vividly reveal their "repulsive" nature. Indeed, we show that the point processes can be characterized by an effective "hard-core" diameter that grows like the square root of d. The nearest-neighbor distribution functions for these point processes are also evaluated and rigorously bounded. Among other results, this analysis reveals that the probability of finding a large spherical cavity of radius r in dimension d behaves like a Poisson point process but in dimension d + 1, i.e., this probability is given by expPoint processes in arbitrary dimension 2 for large r and finite d, where κ(d) is a positive d-dependent constant. We also show that as d increases, the point process behaves effectively like a sphere packing with a coverage fraction of space that is no denser than 1/2 d . This coverage fraction has a special significance in the study of sphere packings in high-dimensional Euclidean spaces.
Hyperuniform many-particle distributions possess a local number variance that grows more slowly than the volume of an observation window, implying that the local density is effectively homogeneous beyond a few characteristic length scales. Previous work on maximally random strictly jammed sphere packings in three dimensions has shown that these systems are hyperuniform and possess unusual quasi-long-range pair correlations decaying as r −4 , resulting in anomalous logarithmic growth in the number variance. However, recent work on maximally random jammed sphere packings with a size distribution has suggested that such quasi-long-range correlations and hyperuniformity are not universal among jammed hard-particle systems. In this paper we show that such systems are indeed hyperuniform with signature quasi-long-range correlations by characterizing the more general local-volume-fraction fluctuations. We argue that the regularity of the void space induced by the constraints of saturation and strict jamming overcomes the local inhomogeneity of the disk centers to induce hyperuniformity in the medium with a linear small-wavenumber nonanalytic behavior in the spectral density, resulting in quasi-long-range spatial correlations scaling with r −(d+1) in d Euclidean space dimensions. A numerical and analytical analysis of the pore-size distribution for a binary MRJ system in addition to a local characterization of the n-particle loops governing the void space surrounding the inclusions is presented in support of our argument. This paper is the first part of a series of two papers considering the relationships among hyperuniformity, jamming, and regularity of the void space in hard-particle packings.
The goal of this paper is to quantitatively describe some statistical properties of higher-dimensional determinantal point processes with a primary focus on the nearest-neighbor distribution functions. Toward this end, we express these functions as determinants of NxN matrices and then extrapolate to N-->infinity . This formulation allows for a quick and accurate numerical evaluation of these quantities for point processes in Euclidean spaces of dimension d . We also implement an algorithm due to Hough for generating configurations of determinantal point processes in arbitrary Euclidean spaces, and we utilize this algorithm in conjunction with the aforementioned numerical results to characterize the statistical properties of what we call the Fermi-sphere point process for d=1-4 . This homogeneous, isotropic determinantal point process, discussed also in a companion paper [S. Torquato, A. Scardicchio, and C. E. Zachary, J. Stat. Mech.: Theory Exp. (2008) P11019.], is the high-dimensional generalization of the distribution of eigenvalues on the unit circle of a random matrix from the circular unitary ensemble. In addition to the nearest-neighbor probability distribution, we are able to calculate Voronoi cells and nearest-neighbor extrema statistics for the Fermi-sphere point process, and we discuss these properties as the dimension d is varied. The results in this paper accompany and complement analytical properties of higher-dimensional determinantal point processes developed in a prior paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.