Experimental evolution of K-12 W3110 by serial dilutions for 2,200 generations at high pH extended the range of sustained growth from pH 9.0 to pH 9.3. pH 9.3-adapted isolates showed mutations in DNA-binding regulators and envelope proteins. One population showed an IS knockout of (encoding the positive regulator of the phosphate regulon). A:: knockout increased growth at high pH. mutants are known to increase production of fermentation acids, which could enhance fitness at high pH. Mutations in [poly(A) polymerase] also increased growth at high pH. Three out of four populations showed deletions of , an inhibitor of TorR, which activates expression of (trimethylamine -oxide respiration) at high pH. All populations showed point mutations affecting the stationary-phase sigma factor RpoS, either in the coding gene or in genes for regulators of RpoS expression. RpoS is required for survival at extremely high pH. In our microplate assay, deletion slightly decreased growth at pH 9.1. RpoS protein accumulated faster at pH 9 than at pH 7. The RpoS accumulation at high pH required the presence of one or more antiadaptors that block degradation (IraM, IraD, and IraP). Other genes with mutations after high-pH evolution encode regulators, such as those encoded by () (PhoPQ regulator), (nitrogen starvation sigma factor),, and , as well as envelope proteins, such as those encoded by and Overall, evolution at high pH selects for mutations in key transcriptional regulators, including and the stationary-phase sigma factor RpoS. in its native habitat encounters high-pH stress such as that of pancreatic secretions. Experimental evolution over 2,000 generations showed selection for mutations in regulatory factors, such as deletion of the phosphate regulator PhoB and mutations that alter the function of the global stress regulator RpoS. RpoS is induced at high pH via multiple mechanisms.
Halobacterium sp. NRC-1 (NRC-1) is an extremely halophilic archaeon that is adapted to multiple stressors such as UV, ionizing radiation and arsenic exposure; it is considered a model organism for the feasibility of microbial life in iron-rich brine on Mars. We conducted experimental evolution of NRC-1 under acid and iron stress. NRC-1 was serially cultured in CM + medium modified by four conditions: optimal pH (pH 7.5), acid stress (pH 6.3), iron amendment (600 µM ferrous sulfate, pH 7.5), and acid plus iron (pH 6.3, with 600 µM ferrous sulfate). For each condition, four independent lineages of evolving populations were propagated. After 500 generations, 16 clones were isolated for phenotypic characterization and genomic sequencing. Genome sequences of all 16 clones revealed 378 mutations, of which 90% were haloarchaeal insertion sequences (ISH) and ISH-mediated large deletions. This proportion of ISH events in NRC-1 was five-fold greater than that reported for comparable evolution of Escherichia coli. One acid-evolved clone had increased fitness compared to the ancestral strain when cultured at low pH. Seven of eight acid-evolved clones had a mutation within or upstream of arcD, which encodes an arginine-ornithine antiporter; no non-acid adapted strains had arcD mutations. Mutations also affected the arcR regulator of arginine catabolism, which protects bacteria from acid stress by release of ammonia. Two acid-adapted strains shared a common mutation in bop, which encodes bacterio-opsin, apoprotein for the bacteriorhodopsin light-driven proton pump. Thus, in the haloarchaeon NRC-1, as in bacteria, pH adaptation was associated with genes involved in arginine catabolism and proton transport. Our study is among the first to report experimental evolution with multiple resequenced genomes of an archaeon. Haloarchaea are polyextremophiles capable of growth under environmental conditions such as concentrated NaCl and desiccation, but little is known about pH stress. Interesting parallels appear between the molecular basis of pH adaptation in NRC-1 and in bacteria, particularly the acid-responsive arginine-ornithine system found in oral streptococci.
16Halobacterium sp. NRC-1 (NRC-1) is an extremely halophilic archaeon that is well 17 adapted to multiple stressors such as UV, ionizing radiation, and arsenic exposure. We conducted 18 experimental evolution of NRC-1 under acid and iron stress to expand the stressors. NRC-1 was 19 serially cultured in CM+ medium modified by four stress conditions, with four evolving 20 populations per condition. At 500 generations the conditions were: optimal pH (pH 7.5), acid 21 stress (pH 6.3), iron stress (600 μM ferrous sulfate, pH 7.5), and acid plus iron stress (600 μM 22
Background Halobacterium sp. NRC-1 (NRC-1) is an extremely halophilic archaeon that is adapted to multiple stressors such as UV, ionizing radiation and arsenic exposure. We conducted experimental evolution of NRC-1 under acid stress. NRC-1 was serially cultured in CM+ medium modified by four conditions: optimal pH (pH 7.5), acid stress (pH 6.3), iron amendment (600 μM ferrous sulfate, pH 7.5), and acid plus iron (pH 6.3, with 600 μM ferrous sulfate). For each condition, four independent lineages of evolving populations were propagated. After 500 generations, 16 clones were isolated for phenotypic characterization and genomic sequencing. Results Genome sequences of all 16 clones revealed 378 mutations, of which 90% were haloarchaeal insertion sequences (ISH) and ISH-mediated large deletions. This proportion of ISH events in NRC-1 was five-fold greater than that reported for comparable evolution of E. coli. One acid-evolved clone had increased fitness compared to the ancestral strain when cultured at low pH. Seven of eight acid-evolved clones had a mutation within or upstream of arcD, which encodes an arginine-ornithine antiporter; no non-acid adapted strains had arcD mutations. Mutations also affected the arcR regulator of arginine catabolism, which protects bacteria from acid stress by release of ammonia. Two acid-adapted strains shared a common mutation in bop, which encodes the bacteriorhodopsin light-driven proton pump. Unrelated to pH, one NRC-1 minichromosome (megaplasmid) pNRC100 had increased copy number, and we observed several mutations that eliminate gas vesicles and arsenic resistance. Thus, in the haloarchaeon NRC-1, as in bacteria, pH adaptation was associated with genes involved in arginine catabolism and proton transport. Conclusions Our study is among the first to report experimental evolution with multiple resequenced genomes of an archaeon. Haloarchaea are polyextremophiles capable of growth under environmental conditions such as concentrated NaCl and desiccation, but little is known about pH stress. Halobacterium sp. NRC-1 (NRC-1) is considered a model organism for the feasibility of microbial life in iron-rich brine on Mars. Interesting parallels appear between the molecular basis of pH adaptation in NRC-1 and in bacteria, particularly the acid-responsive arginine-ornithine system found in oral streptococci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.