The leaf economics spectrum (LES) describes a major axis of plant functional trait variation worldwide, defining suites of leaf traits aligned with resource-acquisitive to resource-conservative ecological strategies. The LES has been interpreted to arise from leaf-level trade-offs among ecophysiological traits common to all plants. However, it has been suggested that the defining leaf-level trade-offs of the LES may not hold within specific functional groups (e.g., herbs) nor within many groups of closely related species, which challenges the usefulness of the LES paradigm across evolutionary scales. Here, we examine the evolution of the LES across 28 species of the diverse herbaceous genus Helianthus (the sunflowers), which occupies a wide range of habitats and climate variation across North America. Using a phylogenetic comparative approach, we find repeated evolution of more resource-acquisitive LES strategies in cooler, drier, and more fertile environments. We also find macroevolutionary correlations among LES traits that recapitulate aspects of the global LES, but with one major difference: leaf mass per area is uncorrelated with leaf lifespan. This indicates that whole-plant processes likely drive variation in leaf lifespan across Helianthus, rather than leaf-level trade-offs. These results suggest that LES patterns do not reflect universal physiological trade-offs at small evolutionary scales.
Leaf vein traits are implicated in the determination of gas exchange rates and plant performance. These traits are increasingly considered as causal factors affecting the 'leaf economic spectrum' (LES), which includes the light-saturated rate of photosynthesis, dark respiration, foliar nitrogen concentration, leaf dry mass per area (LMA) and leaf longevity. This article reviews the support for two contrasting hypotheses regarding a key vein trait, vein length per unit leaf area (VLA). Recently, Blonder et al. (2011, 2013) proposed that vein traits, including VLA, can be described as the 'origin' of the LES by structurally determining LMA and leaf thickness, and thereby vein traits would predict LES traits according to specific equations. Careful re-examination of leaf anatomy, published datasets, and a newly compiled global database for diverse species did not support the 'vein origin' hypothesis, and moreover showed that the apparent power of those equations to predict LES traits arose from circularity. This review provides a 'flux trait network' hypothesis for the effects of vein traits on the LES and on plant performance, based on a synthesis of the previous literature. According to this hypothesis, VLA, while virtually independent of LMA, strongly influences hydraulic conductance, and thus stomatal conductance and photosynthetic rate. We also review (i) the specific physiological roles of VLA; (ii) the role of leaf major veins in influencing LES traits; and (iii) the role of VLA in determining photosynthetic rate per leaf dry mass and plant relative growth rate. A clear understanding of leaf vein traits provides a new perspective on plant function independently of the LES and can enhance the ability to explain and predict whole plant performance under dynamic conditions, with applications towards breeding improved crop varieties.
The current phylogeny supports three major clades including a large annual clade, a southeastern perennial clade, and another clade of primarily large-statured perennials. Relationships among taxa are more consistent with early phylogenies of the genus using morphological and crossing data than recent efforts using single genes, which highlight the difficulties of phylogenetic estimation in genera known for reticulate evolution. Additionally, conflict and low support at the base of the perennial clades may suggest a rapid radiation and/or ancient introgression within the genus.
SummaryPlant resource-use traits are generally hypothesized to be adaptively differentiated for populations distributed along resource gradients. Although nutrient limitations are expected to select for resource-conservative strategies, water limitations may select for either resource-conservative or -acquisitive strategies. We test whether population differentiation reflects local adaptation for traits associated with resource-use strategies in a desert annual (Helianthus anomalus) distributed along a gradient of positively covarying water and nutrient availability.We compared quantitative trait variation (Q ST ) with neutral genetic differentiation (F ST ), in a common garden glasshouse study, for leaf economics spectrum (LES) and related traits: photosynthesis (A mass , A area ), leaf nitrogen (N mass , N area ), leaf lifetime (LL), leaf mass per area (LMA), leaf water content (LWC), water-use efficiency (WUE, estimated as d 13 C) and days to first flower (DFF). Q ST -F ST differences support adaptive differentiation for A mass , N mass , N area , LWC and DFF. The trait combinations associated with drier and lower fertility sites represent correlated trait evolution consistent with the more resource-acquisitive end of the LES. There was no evidence for adaptive differentiation for A area , LMA and WUE.These results demonstrate that hot dry environments can selectively favor correlated evolution of traits contributing to a resource-acquisitive and earlier reproduction 'escape' strategy, despite lower fertility.
The leaf economics spectrum (LES) describes large cross-species variation in suites of leaf functional traits ranging from resource-acquisitive to resource-conservative strategies. Such strategies have been integral in explaining plant adaptation to diverse environments, and have been linked to numerous ecosystem processes. The LES has previously been found to be significantly modulated by climate, soil fertility, biogeography, growth form, and life history. One largely unexplored aspect of LES variation, whole-plant ontogeny, is investigated here using multiple populations of three very different species of sunflower: Helianthus annuus, Helianthus mollis, and Helianthus radula. Plants were grown under environmentally controlled conditions and assessed for LES and related traits at four key developmental stages, using recently matured leaves to standardize for leaf age. Nearly every trait exhibited a significant ontogenetic shift in one or more species, with trait patterns differing among populations and species. Photosynthetic rate, leaf nitrogen concentration, and leaf mass per area exhibited surprisingly large changes, spanning over two-thirds of the original cross-species LES variation and shifting from resource-acquisitive to resource-conservative strategies as the plants matured. Other traits being investigated in relation to the LES, such as leaf water content, pH, and vein density, also showed large changes. The finding that ontogenetic variation in LES strategy can be substantial leads to a recommendation of standardization by developmental stage when assessing 'species values' of labile traits for comparative approaches. Additionally, the substantial ontogenetic trait shifts seen within single individuals provide an opportunity to uncover the contribution of gene regulatory changes to variation in LES traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.