A pilot-scale plasma reactor installed into an 8 × 20 ft 2 mobile trailer was used to rapidly and effectively degrade poly-and perfluoroalkyl substances (PFAS) from liquid investigation-derived waste (IDW; development and purge water from monitoring wells) obtained from 13 different site investigations at Air Force installations. In the raw water, numerous PFAS were detected in a wide concentration range (∼10−10 5 ng/L; total oxidizable precursors (TOP) ∼10 2 −10 5 ng/L, total fluorine by combustion ion chromatography ∼10 2 to 5 × 10 6 ng F/L). The concentration of total PFAS (12 perfluorocarboxylic acids (PFCAs) and perfluoroalkyl sulfonates (PFSAs)) in the 13 samples ranged between 2.7 and 1440 μg/L and the concentration of perfluorooctane sulfonate (PFOS) plus perfluorooctanoic acid (PFOA) ranged between 365 and 73700 ng/L. Plasma-based water treatment resulted in rapid perfluoroalkyl acids (PFAAs) removal from 4 L individual IDW samples with faster rates for longer-chain PFCAs (C ≥ 8) and PFSAs (C ≥ 6) than for PFCAs and PFSAs of shorter chain length. In 9 of the 13 IDW samples, both PFOS and PFOA were removed to below United States Environmental Protection Agency's (USEPA's) health advisory concentration level (HAL) concentrations in <1 min, whereas longer treatment times (up to 50 min) were required for the remaining four IDW samples due to either extremely high solution electrical conductivity, which decreased the plasma−liquid contact area (one IDW sample) or high concentrations of PFAAs and their precursors; the latter was found to be converted to PFAAs during the treatment. Overall, 36−99% of the TOP concentration present in the IDWs was removed during the treatment. There was no effect of non-PFAS co-contaminants on the degradation efficiency. Overall, the results indicate that plasma-based water treatment is a viable technology for the treatment of PFAS-contaminated IDW.
“High-concentration” and “low-concentration” bench-scale batch plasma reactors were used to effectively degrade per- and polyfluoroalkyl substances (PFAS) at a high concentration (∼100 mg/L) and a low concentration (<1 μg/L), respectively, in ion exchange (IX) regenerant still bottom (SB) solutions. In the SBs, numerous PFAS were detected with a wide concentration range (∼0.01 to 100 mg/L; total oxidizable precursors (TOP) ∼4000 to 10000 mg/L). In the “high-concentration” plasma reactor, the concentrations of PFAS precursors and long-chain perfluoroalkyl acids (PFAAs) (≥6C for PFSAs and ≥8C for perfluorocarboxylic acids (PFCAs)) were decreased by >99.9% in 2 h, and short-chain PFAAs (<6C for perfluorocarboxylic acids (PFSAs) and <8C PFCAs) were decreased by >99% in 6 h of treatment. Subsequently, a “low concentration” plasma reactor was used to remove additional PFAAs. In this reactor, the addition of CTAB (cetrimonium bromide, a cationic surfactant) caused short-chain PFAAs, other than PFBA, to be removed to below detection limits in 90 min of treatment time. Overall, >99% of the TOP present in SBs was removed during the treatment. Fluorine recovery of 47 to 117% was obtained in six SB samples. Energy requirement (EE/O) for the treatment of PFOA and PFOS from SBs ranged from 380 to 830 kWh/m3.
The influence of solution electrical conductivity and ion composition on the performance of plasma reactors for water treatment applications is only partially understood. This study uses a point–point discharge over the surface of water in argon gas to determine the influence of solution conductivity, in the range of 0.3–45 mS/cm, on the physiochemical properties of spark discharges and the removal of two organic contaminants: perfluorooctanoic acid (PFOA) and Rhodamine B dye. The influence of various ions was also explored using chlorine and non-chlorine salts to adjust solution conductivity. The removal of PFOA increased with conductivity regardless of the salt type due to the salting out effect which increased PFOA's interfacial concentration. The removal of Rhodamine B dye depended on both salt type and solution electrical conductivity. In the presence of non-chorine salts, UV photolysis was the main mechanism for the dye degradation and its removal rate did not change with conductivity. The dye removal rate was the highest in the presence of chloride-based salts at the highest values of solution conductivities. In the presence of chorine salts, OH radicals are produced by the discharge generated hypochlorous acid, which is mixed into the bulk solution to react with the Rhodamine B dye. The generation rate of hydroxyl radicals appears to decrease with increasing solution conductivity, and these species are not directly involved in the degradation of the two compounds investigated in this study.
A pilot-scale plasma-based water treatment system containing two enhanced contact plasma reactors was deployed to a fire training area at Wright-Patterson Air Force Base to treat poly- and perfluoroalkyl substances (PFAS) in aqueous film-forming foam-impacted groundwater from two monitoring wells, wells B and C. Extracted water from both wells was treated through the plasma trailer in a semibatch mode at flow rates ranging from 2.4 to 8.4 L/min. Long-chain perfluoroalkyl acids (PFAAs; fluorocarbon chain of ≥6) and PFAS precursors were reduced by ≥90% for all flow rates in a single cycle through the reactors. Combined perfluorooctanoic acid and perfluorooctanesulfonic acid concentrations lower than the U.S. Environmental Protection Agency’s health advisory level of 70 ng/L were achieved in fewer than three cycles through the reactors. Short-chain PFAAs (fluorocarbon chain of ≤5) were removed to a lesser extent (0–95%) due to their generation during plasma treatment of long-chain PFAAs and PFAS precursors and limited accumulation at the plasma–liquid interface of the reactor. To improve the destruction of short-chain PFAAs, batch mode experiments were performed with the addition of a cationic surfactant (cetrimonium bromide), resulting in an 88% reduction of all short-chain PFAAs within 120 min of treatment.
To provide insights into the design, optimization, and scale up of plasma reactors for water treatment, the influences of discharge energy, grounded electrode size and position, and number of high voltage (HV) discharge points on the production of reactive species and the degradation of 1,4-dioxane and perfluorooctanoic acid in a gas-liquid electrical discharge plasma reactor were assessed. Discharge energy and plasma area largely control the treatment
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.