Chromatin modifiers play critical roles in epidermal development, but the functions of histone deacetylases in this context are poorly understood. The class I HDAC, HDAC3, is of particular interest because it plays divergent roles in different tissues by partnering with tissue-specific transcription factors. We found that HDAC3 is expressed broadly in embryonic epidermis and is required for its orderly stepwise stratification. HDAC3 protein stability in vivo relies on NCoR and SMRT, which function redundantly in epidermal development. However, point mutations in the NCoR and SMRT deacetylase-activating domains, which are required for HDAC3's enzymatic function, permit normal stratification, indicating that HDAC3's roles in this context are largely independent of its histone deacetylase activity. HDAC3-bound sites are significantly enriched for predicted binding motifs for critical epidermal transcription factors including AP1, GRHL, and KLF family members. Our results suggest that among these, HDAC3 operates in conjunction with KLF4 to repress inappropriate expression of Tgm1, Krt16, and Aqp3. In parallel, HDAC3 suppresses expression of inflammatory cytokines through a Rela-dependent mechanism. These data identify HDAC3 as a hub coordinating multiple aspects of epidermal barrier acquisition.
Hematopoietic stem cells constitute a unique subpopulation of blood cells that can give rise to all types of mature cells in response to physiological demands. However, the intrinsic molecular machinery that regulates this transformative property remains elusive. In this paper, we demonstrate that small GTPase Rheb1 is a critical regulator of proliferation and differentiation of hematopoietic stem cells in vivo. Rheb1 deletion led to increased phenotypic hematopoietic stem cell/hematopoietic progenitor cell proliferation under a steady state condition. Over-proliferating Rheb1-deficient hematopoietic stem cells were severely impaired in functional repopulation assays, and they failed to regenerate the blood system when challenged with hematopoietic ablation by sublethal irradiation. In addition, it was discovered that Rheb1 loss resulted in a lack of maturation of neutrophils / caused neutrophil immaturation by reducing mTORC1 activity, and that activation of the mTORC1 signaling pathway by mTOR activator 3BDO partially restored the maturation of Rheb1-deficient neutrophils. Rheb1 deficiency led to a progressive enlargement of the hematopoietic stem cell population and an eventual excessive myeloproliferation in vivo, including an overproduction of peripheral neutrophils and an excessive expansion of extramedullary hematopoiesis. Moreover, low RHEB expression was correlated with poor survival in acute myeloid leukemia patients with normal karyotype. Our results, therefore, demonstrate a critical and unique role for Rheb1 in maintaining proper hematopoiesis and myeloid differentiation.
Abstract:The constitutive activation of phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway has been demonstrated to be critical in clinical cancer patients as well as in laboratory cancer models including hematological malignancies. Great efforts have been made to develop inhibitors targeting this pathway in hematological malignancies but so far the efficacies of these inhibitors were not as good as expected. By analyzing existing literatures and datasets available, we found that mutations of genes in the pathway only constitute a very small subset of hematological malignancies. Deep understanding of the function of gene, the pathway and/or its regulators, and the cellular response to inhibitors, may help us design better drugs targeting the hematological malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.