The fragmentation behavior of various cysteine sulfinyl ions (intact, N-acetylated, and O-methylated), new members of the gas-phase amino acid radical ion family, was investigated by low-energy collision-induced dissociation (CID). The dominant fragmentation channel for the protonated cysteine sulfinyl radicals ((SO•)Cys) was the radical-directed Cα-Cβ homolytic cleavage, resulting in the formation of glycyl radical ions and loss of CH2SO. This channel, however, was not observed for protonated N-acetylated cysteine sulfinyl radicals (Ac-(SO•)Cys); instead, charge-directed H2O loss followed immediately by SH loss prevailed. Counterintuitively, the H2O loss did not derive from the carboxyl group but involved the sulfinyl oxygen, a proton, and a Cβ hydrogen atom. Theoretical calculations suggested that N-acetylation significantly increases the barrier (~14 kcal mol(-1)) for the radical-directed fragmentation channel because of its reduced capability to stabilize the thus-formed glycyl radical ions via the captodative effect. N-Acetylation also assists in moving the proton to the sulfinyl site, which reduces the barrier for H2O loss. Our studies demonstrate that for cysteine sulfinyl radical ions, the stability of the product ions (glycyl radical ions) and the location of the charge (proton) can significantly modulate the competition between radical- and charge-directed fragmentation.
In this study, we systematically investigated gas-phase fragmentation behavior of [M + nH + OH] n•+ ions formed from peptides containing intra-molecular disulfide bond. Backbone fragmentation and radical initiated neutral losses were observed as the two competing processes upon low energy collision-induced dissociation (CID). Their relative contribution was found to be affected by the charge state (n)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.