Sequential evaluation and process control strategy were employed for impurity profile and high recovery with quality of rhIFN-beta-1b expressed in Escherichia coli. The high-level expression was achieved by using codon substitution (AT content of 52.6% at N-terminal region) and optimization of culture conditions. The addition of rifampicin at a concentration of 200 microg/ml has increased the specific product yield of 66 mg optical density(-1) l(-1) (43.5% of total cellular protein). Eighty-three percent of lipopolysaccharides, 32% of host deoxyribonucleic acid (DNA), and 78% of host cell proteins were removed by 0.75% Triton X-100 and 2 M urea wash. Eleven percent of lipopolysaccharides, 39% of host DNA, and 12% of host cell proteins were removed at the solubilization step. Ninety-two percent of protein refolding was achieved by high-pressure diafiltration method. Refolding by high-pressure diafiltration, bed height, and height equivalent to the theoretical plate value in chromatography column were identified as key parameters for high recovery with purity. Finally, the established process yielded 34% of purified protein with greater than 99% purity and is acceptable for preclinical toxicological studies. The purified rhIFN-beta-1b obtained in this study is the highest that has been reported so far.
The impact of different levels of agitation speed, carbondioxide and dissolved oxygen concentration on the key parameters and production of rhG-CSF in Escherichia coli BL21(DE3)PLysS were studied. Lower carbondioxide concentrations as well as higher agitation speeds and dissolved oxygen concentrations led to reduction in the acetate concentrations, and enhanced the cell growth, but inhibited plasmid stability and rhG-CSF expression. Similarly, higher carbondioxide concentrations and lower agitation speeds as well as dissolved oxygen concentrations led to enhanced acetate concentrations, but inhibited the cell growth and protein expression. To address the bottlenecks, a two-stage agitation control strategy (strategy-1) and two-stage dissolved oxygen control strategy (strategy-2) were employed to establish the physiological and metabolic conditions, so as to improve the expression of rhG-CSF. By adopting strategy-1 the yields were improved 1.4-fold over constant speed of 550 rpm, 1.1-fold over constant dissolved oxygen of 45%, respectively. Similarly, using strategy-2 the yields were improved 1.6-fold over constant speed of 550 rpm, 1.3-fold over constant dissolved oxygen of 45%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.