BackgroundHost feeding patterns of Anopheles minimus in relation to ambient environmental conditions were observed during a 2-year period at Tum Sua Village, located in Mae Sot District, Tak Province, in western Thailand, where An. minimus is found in abundance and regarded as the most predominant malaria vector species. Detailed information on mosquito behavior is important for understanding the epidemiology of disease transmission and developing more effective and efficient vector control methods.MethodsAdult mosquitoes were collected every 2 months for two consecutive nights from 1800 to 0600 hrs. Three collection methods were used; indoor human-landing collections (HLC), outdoor HLC, and outdoor cattle-bait collections (CBC).ResultsA total of 7,663 female Anopheles mosquitoes were collected of which 5,392 were identified as members of 3 different species complexes, the most prevalent being Anopheles minimus complex (50.36%), followed by Anopheles maculatus complex (19.68%) and Anopheles dirus complex (0.33%). An. minimus s.s. comprised virtually all (> 99.8 percent) of Minimus Complex species captured. Blood feeding behavior of An. minimus was more pronounced during the second half of the evening, showing a slight preference to blood feed outdoors (~60%) versus inside structures. Significantly (P < 0.0001) more An. minimus were collected from human-baited methods compared with a tethered cow, indicating a more anthropophilic feeding behavior. Although a significant difference in total number of mosquitoes from the HLC was recorded between the first and second year, the mean biting frequency over the course of the evening hours remained similar.ConclusionsThe Human landing activity of An. minimus in Tum Sua Village showed a stronger preference/attraction for humans compared to a cow-baited collection method. This study supports the incrimination of An. minimus as the primary malaria vector in the area. A better understanding of mosquito behavior related to host preference, and the temporal and spatial blood feeding activity will help facilitate the design of vector control strategies and effectiveness of vector control management programs in Thailand.
BackgroundA survey of adult anopheline mosquito diversities, collected from September 2009 to August 2010, was conducted in a malaria endemic area of western Thailand. Two anopheline species complexes, Dirus and Minimus, along with the Maculatus group were observed. Of several species documented from within each complex and group, four important malaria vectors were identified, including An. dirus, An. baimaii, An. minimus, and An. sawadwongporni. Information on biting activity and host preference for any single species within the Dirus complex has never been assessed. Using specific molecular identification assays, the trophic behavior and biting activity of each sibling species within the Dirus complex were observed and analyzed for the Kanchanaburi Province, Thailand.MethodsAdult female mosquitoes were collected for two consecutive nights each month during a one year period. Three collection methods, human landing indoor (HLI), human landing outdoor (HLO), and cattle baited collections (CBC) were applied. Each team of collectors captured mosquitoes between 1800 and 0600 h.ResultsFrom a total of 9,824 specimens, 656 belong to the Dirus complex (An. dirus 6.09% and An. baimaii 0.59%), 8,802 to the Minimus complex (An. minimus 4.95% and An. harrisoni 84.65%) and 366 to the Maculatus group (An. maculatus 2.43% and An. sawadwongporni 1.29%). Both An. dirus and An. baimaii demonstrated exophagic and zoophilic behaviors. Significantly greater numbers of An. dirus and An. baimaii were collected from cattle as compared to humans (P = 0.003 for An. dirus and P = 0.048 for An. baimaii).ConclusionsSignificantly greater numbers of An. dirus and An. baimaii were collected from cattle baited traps as compared to human landing collections (P < 0.05), demonstrating that both species show a strong zoophilic behavior. Knowledge of host-seeking behavior helps to define a species' capacity to acquire and transmit malaria and its contribution to the overall risk for disease transmission in the human population, as well as, assisting in the design and implementation of appropriate vector prevention and control strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.