Both transcriptionally and translationally inactive sperm need preassembled pathways into specific cellular compartments to function. Although initiation of the acrosome reaction (AR) involves several signaling pathways including protein kinase A (PKA) activation, how these are regulated remains poorly understood in avian sperm. Membrane rafts are specific membrane regions enriched in sterols and functional proteins and play important roles in diverse cellular processes, including signal transduction. Our recent studies on chicken sperm demonstrated that membrane rafts exist and play a role in multistage fertilization. These, combined with the functional importance of membrane rafts in mammalian sperm AR, prompted us to investigate the roles of membrane rafts in signaling pathways leading to AR in chicken sperm. Using 2-hydroxypropyl-β-cyclodextrin (2-OHCD), we found that the disruption of membrane rafts inhibits PKA activity and AR without affecting protein tyrosine phosphorylation; however, these inhibitions were abolished in the presence of a cyclic 3',5'-monophosphate (cAMP) analogue. In addition, biochemical experiments showed a decrease in cAMP content in 2-OHCD-treated sperm, suggesting the involvement of soluble adenylyl cyclase (sAC) and transmembrane adenylyl cyclase (tmAC). Pharmacological experiments, combined with transcriptome analysis, showed that sAC and tmAC are present and involved in AR induction in chicken sperm. Furthermore, stimulation of both isoforms reversed the inhibition of PKA activity and AR in 2-OHCD-treated sperm. In conclusion, our results demonstrated that membrane rafts play an important role in AR induction by regulating the cAMP-dependent pathway and that they provide a mechanistic insight into membrane regulation of AR and sperm function in birds.
The acrosome reaction (AR) is a strictly-regulated, synchronous exocytosis that is required for sperm to penetrate ova. This all-or-nothing process occurs only once in the sperm lifecycle through a sequence of signaling pathways. Spontaneous, premature AR therefore compromises fertilization potential. Although protein kinase A (PKA) pathways play a central role in AR across species, the signaling network used for AR induction is poorly understood in birds. Mechanistic studies of mammalian sperm AR demonstrate that PKA activity is downstreamly regulated by Src family kinases (SFKs). Using SFK inhibitors, our study shows that in chicken sperm, SFKs play a role in the regulation of PKA activity and spontaneous AR without affecting motility. Furthermore, we examined the nature of SFK phosphorylation using PKA and protein tyrosine phosphatase inhibitors, which demonstrated that unlike in mammals, SFK phosphorylation in birds does not occur downstream of PKA and is primarily regulated by calcium-dependent tyrosine phosphatase activity. Functional characterization of SFKs in chicken sperm showed that SFK activation modulates the membrane potential and plays a role in inhibiting spontaneous AR. Employing biochemical isolation, we also found that membrane rafts are involved in the regulation of SFK phosphorylation. This study demonstrates a unique mechanism for regulating AR induction inherent to avian sperm that ensure fertilization potential despite prolonged storage.
Glucose plays an important role in sperm flagellar motility and fertility via glycolysis and oxidative phosphorylation, although the primary mechanisms for ATP generation vary between species. The glucose transporter 1 (GLUT1) is a high-affinity isoform and a major glucose transporter in mammalian spermatozoa. However, in avian spermatozoa, the glucose metabolic pathways are poorly characterised. This study demonstrates that GLUT1 plays a major role in glucose-mediated motility of chicken spermatozoa. Using specific antibodies and ligand, we found that GLUT1 was specifically localised to the midpiece. Sperm motility analysis showed that glucose supported sperm movement during incubation for 0–80min. However, this was abolished by the addition of a GLUT1 inhibitor, concomitant with a substantial decrease in glucose uptake and ATP production, followed by elevated mitochondrial activity in response to glucose addition. More potent inhibition of ATP production and mitochondrial activity was observed in response to treatment with uncouplers of oxidative phosphorylation. Because mitochondrial inhibition only reduced a subset of sperm movements, we investigated the localisation of the glycolytic pathway and showed glyceraldehyde-3-phosphate dehydrogenase and hexokinase I at the midpiece and principal piece of the flagellum. The results of this study provide new insights into the mechanisms involved in ATP production pathways in avian spermatozoa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.