The decades-long use of supplementary cementitious materials (SCMs) as replacements for ordinary Portland cement (OPC) by the cement and concrete industry is undergoing a resurgence in research activities related to goals addressing circular economy activities, as well as reduction in CO2 emissions. Differences in the chemistry, mineralogy and reactivity of SCMs compared to OPC impact the fresh properties of concrete. Some SCMs exhibit greater initial water uptake and thus compete strongly with OPC for water during hydration. This study focuses on the early interaction with water as a primary factor that determines the resulting fresh properties and workability. Currently, no test (standard or otherwise) is available for quantifying initial interactions between water and cementitious materials. A quick and reliable method to measure the initial water uptake of SCMs is presented herein, which relies on their affinity to water. The method enables the calculation of water-to-binder ratios for different SCMs required to achieve the same workability as a reference OPC. The results are then well correlated to measured slump and bleed properties. We propose this simple technique to be used by researchers and industry practitioners to better predict the fresh properties of concretes, mortars, or pastes with SCMs.
Australia and many other parts of the world face issues of contamination in groundwater and soils by per- and poly-fluoroalkyl substances (PFAS). While the pyrolytic treatment of contaminated soils can destroy PFAS, the resulting heat-treated soils currently have limited applications. The purpose of this study was to demonstrate the usefulness of remediated soils in concrete applications. Using heat-treated soil as a fine aggregate, with a composition and particle size distribution similar to that of traditional concrete sands, proved to be a straightforward process. In such situations, complete fine aggregate replacement could be achieved with minimal loss of compressive strength. At high fine aggregate replacement (≥ 60%), a wetting agent was required for maintaining adequate workability. When using the heat-treated soil as a supplementary cementitious material, the initial mineralogy, the temperature of the heat-treatment and the post-treatment storage (i.e., keeping the soil dry) were found to be key factors. For cement mortars where minimal strength loss is desired, up to 15% of cement can be replaced, but up to 45% replacement can be achieved if moderate strengths are acceptable. This study successfully demonstrates that commercially heat-treated remediated soils can serve as supplementary cementitious materials or to replace fine aggregates in concrete applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.