Rationale: A sedentary lifestyle is associated with increased risk for cardiovascular disease (CVD). Smartwatches enable accurate daily activity monitoring for physical activity measurement and intervention. Few studies, however, have examined physical activity measures from smartwatches in relation to traditional risk factors associated with future risk for CVD. Objective: To investigate the association of habitual physical activity measured by smartwatch with predicted CVD risk in adults. Methods and Results: We enrolled consenting Framingham Heart Study (FHS) participants in an ongoing electronic Framingham Heart Study (eFHS) at the time of their FHS research center examination. We provided participants with a smartwatch (Apple Watch Series 0) and instructed them to wear it daily, which measured their habitual physical activity as the average daily step count. We estimated the 10-year predicted risk of CVD using the ACC/AHA 2013 pooled cohort risk equation. We estimated the association between physical activity and predicted risk of CVD using linear mixed effects models adjusting for age, sex, wear time, and familial structure. Our study included 903 eFHS participants (mean age 53{plus minus}9 years, 61% women, 9% non-white) who wore the smartwatch greater than 5 hours per day for more than 30 days. Median daily step count was similar among men (7,202 with interquartile range [IQR] 3,619) and women (7,260 with IQR 3,068, P=0.52). Average 10-year predicted CVD risk was 4.5% (IQR 6.1%) for men and 1.2% (IQR 2.2%) for women (P=1.3x10-26). Every 1,000 steps higher habitual physical activity was associated with 0.18% lower predicted CVD risk (P=3.2x10-4). The association was attenuated but remained significant after further adjustment for body mass index (P=0.01). Conclusions: In this community-based sample of adults, higher daily physical activity measured by a study smartwatch was associated with lower predicted risk of CVD. Future research should examine the longitudinal association of prospectively measured daily activity and incident CVD.
Background eCohort studies offer an efficient approach for data collection. However, eCohort studies are challenged by volunteer bias and low adherence. We designed an eCohort embedded in the Framingham Heart Study (eFHS) to address these challenges and to compare the digital data to traditional data collection. Objective The aim of this study was to evaluate adherence of the eFHS app-based surveys deployed at baseline (time of enrollment in the eCohort) and every 3 months up to 1 year, and to compare baseline digital surveys with surveys collected at the research center. Methods We defined adherence rates as the proportion of participants who completed at least one survey at a given 3-month period and computed adherence rates for each 3-month period. To evaluate agreement, we compared several baseline measures obtained in the eFHS app survey to those obtained at the in-person research center exam using the concordance correlation coefficient (CCC). Results Among the 1948 eFHS participants (mean age 53, SD 9 years; 57% women), we found high adherence to baseline surveys (89%) and a decrease in adherence over time (58% at 3 months, 52% at 6 months, 41% at 9 months, and 40% at 12 months). eFHS participants who returned surveys were more likely to be women (adjusted odds ratio [aOR] 1.58, 95% CI 1.18-2.11) and less likely to be smokers (aOR 0.53, 95% CI 0.32-0.90). Compared to in-person exam data, we observed moderate agreement for baseline app-based surveys of the Physical Activity Index (mean difference 2.27, CCC=0.56), and high agreement for average drinks per week (mean difference 0.54, CCC=0.82) and depressive symptoms scores (mean difference 0.03, CCC=0.77). Conclusions We observed that eFHS participants had a high survey return at baseline and each 3-month survey period over the 12 months of follow up. We observed moderate to high agreement between digital and research center measures for several types of surveys, including physical activity, depressive symptoms, and alcohol use. Thus, this digital data collection mechanism is a promising tool to collect data related to cardiovascular disease and its risk factors.
BACKGROUND The electronic Framingham Heart Study (eFHS) is an ongoing nested study, which includes FHS study participants, examining associations between health data from mobile devices with cardiovascular risk factors and disease.OBJECTIVE To describe application (app) design, report user characteristics, and describe usability and survey response rates.METHODS Eligible FHS participants were consented and offered a smartwatch (Apple Watch), a digital blood pressure (BP) cuff, and the eFHS smartphone app for administering surveys remotely. We assessed usability of the new app using 2 domains (functionality, aesthetics) of the Mobile App Rating Scale (MARS) and assessed survey completion rates at baseline and 3 months.RESULTS A total of 196 participants were recruited using the enhanced eFHS app. Of these, 97 (49.5%) completed the MARS instrument. Average age of participants was 53 6 9 years, 51.5% were women, and 93.8% were white. Eighty-six percent of participants completed at least 1 measure on the baseline survey, and 50% completed the 3-month assessment. Overall subjective score of the app was 4.2 6 0.7 on a scale from 1 to 5 stars. Of those who shared their health data with others, 46% shared their BP and 7.7% shared their physical activity with a health care provider.CONCLUSION Participants rated the new, enhanced eFHS app positively overall. Mobile app survey completion rates were high, consistent with positive in-app ratings from participants. These mobile data collection modalities offer clinicians new opportunities to engage in conversations about health behaviors.
Background When studied in community-based samples, the association of physical activity with blood pressure (BP) remains controversial and is perhaps dependent on the intensity of physical activity. Prior studies have not explored the association of smartwatch-measured physical activity with home BP. Objective We aimed to study the association of habitual physical activity with home BP. Methods Consenting electronic Framingham Heart Study (eFHS) participants were provided with a study smartwatch (Apple Watch Series 0) and Bluetooth-enabled home BP cuff. Participants were instructed to wear the watch daily and transmit BP values weekly. We measured habitual physical activity as the average daily step count determined by the smartwatch. We estimated the cross-sectional association between physical activity and average home BP using linear mixed effects models adjusting for age, sex, wear time, antihypertensive drug use, and familial structure. Results We studied 660 eFHS participants (mean age 53 years, SD 9 years; 387 [58.6%] women; 602 [91.2%] White) who wore the smartwatch 5 or more hours per day for 30 or more days and transmitted three or more BP readings. The mean daily step count was 7595 (SD 2718). The mean home systolic and diastolic BP (mmHg) were 122 (SD 12) and 76 (SD 8). Every 1000 increase in the step count was associated with a 0.49 mmHg lower home systolic BP (P=.004) and 0.36 mmHg lower home diastolic BP (P=.003). The association, however, was attenuated and became statistically nonsignificant with further adjustment for BMI. Conclusions In this community-based sample of adults, higher daily habitual physical activity measured by a smartwatch was associated with a moderate, but statistically significant, reduction in home BP. Differences in BMI among study participants accounted for the majority of the observed association.
Long-term use of digital devices is critical for successful clinical or research use, but digital health studies are challenged by a rapid drop-off in participation. A nested e-cohort (eFHS) is embedded in the Framingham Heart Study and uses three system components: a new smartphone app, a digital blood pressure (BP) cuff, and a smartwatch. This study aims to identify factors associated with the use of individual eFHS system components over 1-year. Among 1948 eFHS enrollees, we examine participants who returned surveys within 90 days (n = 1918), and those who chose to use the smartwatch (n = 1243) and BP cuff (n = 1115). For each component, we investigate the same set of candidate predictors for usage and use generalized linear mixed models to select predictors (P < 0.1, P value from Z test statistic), adjusting for age, sex, and time (app use: 3-month period, device use: weekly). A multivariable model with the predictors selected from initial testing is used to identify factors associated with use of components (P < 0.05, P value from Z test statistic) adjusting for age, sex, and time. In multivariable models, older age is associated with higher use of all system components. Female sex and higher education levels are associated with higher completion of app-based surveys whereas higher scores for depressive symptoms, and lower than excellent self-rated health are associated with lower use of the smartwatch over the 12-month follow-up. Our findings show that sociodemographic and health related factors are significantly associated with long-term use of digital devices. Future research is needed to test interventional strategies focusing on these factors to evaluate improvement in long-term engagement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.