The recent paradigm shift towards the transmission of large numbers of mutually interfering information streams, as in the case of aggressive spatial multiplexing, combined with requirements towards very low processing latency despite the frequency plateauing of traditional processors, initiates a need to revisit the fundamental maximum-likelihood (ML) and, consequently, the sphere-decoding (SD) detection problem. This work presents the design and VLSI architecture of MultiSphere; the first method to massively parallelize the tree search of large sphere decoders in a nearly-concurrent manner, without compromising their maximum-likelihood performance, and by keeping the overall processing complexity comparable to that of highly-optimized sequential sphere decoders. For a 10 ⇥ 10 MIMO spatially multiplexed system with 16-QAM modulation and 32 processing elements, our MultiSphere architecture can reduce latency by 29⇥ against well-known sequential SDs, approaching the processing latency of linear detection methods, without compromising ML optimality. In MIMO multicarrier systems targeting exact ML decoding, MultiSphere achieves processing latency and hardware efficiency that are orders of magnitude improved compared to approaches employing one SD per subcarrier. In addition, for 16⇥16 both "hard"-and "soft"-output MIMO systems, approximate MultiSphere versions are shown to achieve similar error rate performance with state-of-the art approximate SDs having akin parallelization properties, by using only one tenth of the processing elements, and to achieve up to approximately 9⇥ increased energy efficiency.
Abstract-This work introduces MultiSphere, a method to massively parallelize the tree search of large sphere decoders in a nearly-independent manner, without compromising their maximum-likelihood performance, and by keeping the overall processing complexity at the levels of highly-optimized sequential sphere decoders. MultiSphere employs a novel sphere decoder tree partitioning which can adjust to the transmission channel with a small latency overhead. It also utilizes a new method to distribute nodes to parallel sphere decoders and a new tree traversal and enumeration strategy which minimize redundant computations despite the nearly-independent parallel processing of the subtrees. For an 8 × 8 MIMO spatially multiplexed system with 16-QAM modulation and 32 processing elements MultiSphere can achieve a latency reduction of more than an order of magnitude, approaching the processing latency of linear detection methods, while its overall complexity can be even smaller than the complexity of well-known sequential sphere decoders. For 8×8 MIMO systems, MultiSphere's sphere decoder tree partitioning method can achieve the processing latency of other partitioning schemes by using half of the processing elements. In addition, it is shown that for a multi-carrier system with 64 subcarriers, when performing sequential detection across subcarriers and using MultiSphere with 8 processing elements to parallelize detection, a smaller processing latency is achieved than when parallelizing the detection process by using a single processing element per subcarrier (64 in total).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.