A wirelength-driven placer without considering routability could introduce irresolvable routing-congested placements. Therefore, it is desirable to develop an effective routability-driven placer for modern mixed-size designs employing hierarchical methodologies for faster turnaround time. This paper presents a novel two-stage technique to effectively identify design hierarchies and guide placement for better wirelength and routability. To optimize wirelength and routability simultaneously during placement, a new analytical net-congestion-optimization technique is also proposed. Compared with the participating teams for the 2012 ICCAD Design Hierarchy Aware Routability-driven Placement Contest, our placer can achieve the best quality (both the average overflow and wirelength) and the best overall score (by additionally considering running time).
We present a new floorplan representation, called circular-packing trees (CP-trees), for the problem of macro placement. Our CPtrees can flexibly pack movable macros toward corners or preplaced macros along chip boundaries circularly to optimize macro positions/orientations for better wirelength and routing congestion. Unlike previous macro placers that often consider only the interconnections among macros, we develop a routability-aware wirelength model to fast estimate the wirelength among macros and standard cells and to consider macro porosity effects for better routability. Compared with leading academic mixed-size placers, experimental results show that our algorithm can achieve the shortest routed wirelength for industrial benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.