Mirror-image pain is characterized by mechanical hypersensitivity on the uninjured mirror-image side. Recent reports favor central mechanisms, but whether peripheral mechanisms are involved remains unclear. We used unilateral spinal nerve ligation (SNL) to induce mirror-image pain in rats. On the mirror-image (contralateral) side, we found that satellite glia in the dorsal root ganglion (DRG) were activated, whereas macrophages/Schwann cells in the DRG and astrocytes/oligodendrocytes/microglia in the dorsal spinal cord were not. Subsequently, an increase in nerve growth factor (NGF) was detected in the contralateral DRG, and NGF immunoreactivity was concentrated in activated satellite glia. These phenomena were abolished if fluorocitrate (a glial inhibitor) was intrathecally injected before SNL. Electrophysiological recordings in cultured small DRG neurons showed that exogenous NGF enhanced nociceptor excitability. Intrathecal injection of NGF into naive rats induced long-lasting mechanical hypersensitivity, similar to SNL-evoked mirror-image pain. Anti-NGF effectively relieved SNL-evoked mirror-image pain. In the contralateral DRG, the SNL-evoked tumor necrosis factor alpha (TNF-α) increase, which started later than in the ipsilateral DRG and cerebrospinal fluid, occurred earlier than satellite glial activation and the NGF increase. Intrathecal injection of TNF-α into naive rats not only activated satellite glia to produce extra NGF in the DRG but also evoked mechanical hypersensitivity, which could be attenuated by anti-NGF injection. These results suggest that after SNL, satellite glia in the contralateral DRG are activated by TNF-α that diffuses from the injured side via cerebrospinal fluid, which then activates satellite glia to produce extra NGF to enhance nociceptor excitability, which induces mirror-image pain.
Elevated nerve growth factor (NGF) in the contralateral dorsal root ganglion (DRG) mediates mirror-image pain after peripheral nerve injury, but the underlying mechanism remains unclear. Using intrathecal injection of NGF antibodies, we found that NGF is required for the development of intra-DRG synapse-like structures made by neurite sprouts of calcitonin gene-related peptide (CGRP(+)) nociceptors and sympathetic axons onto neurite sprouts of Kv4.3(+) nociceptors. These synapse-like structures are formed near NGF-releasing satellite glia surrounding large DRG neurons. Downregulation of the postsynaptic protein PSD95 with a specific shRNA largely eliminates these synapse-like structures, suppresses activities of Kv4.3(+) but not CGRP(+) nociceptors, and attenuates mirror-image pain. Furthermore, neutralizing the neurotransmitter norepinephrine or CGRP in the synapse-like structures by antibodies has similar analgesic effect. Thus, elevated NGF after peripheral nerve injury induces neurite sprouting and the formation of synapse-like structures within the contralateral DRG, leading to the development of chronic mirror-image pain.
Subthreshold A-type K(+) currents (ISA s) have been recorded from the somata of nociceptors and spinal lamina II excitatory interneurons, which sense and modulate pain, respectively. Kv4 channels are responsible for the somatodendritic ISA s. Accumulative evidence suggests that neuronal Kv4 channels are ternary complexes including pore-forming Kv4 subunits and two types of auxiliary subunits: K(+) channel-interacting proteins (KChIPs) and dipeptidyl peptidase-like proteins (DPPLs). Previous reports have shown Kv4.3 in a subset of nonpeptidergic nociceptors and Kv4.2/Kv4.3 in certain spinal lamina II excitatory interneurons. However, whether and which KChIP and DPPL are coexpressed with Kv4 in these ISA -expressing pain-related neurons is unknown. In this study we mapped the protein distribution of KChIP1, KChIP2, KChIP3, DPP6, and DPP10 in adult rat dorsal root ganglion (DRG) and spinal cord by immunohistochemistry. In the DRG, we found colocalization of KChIP1, KChIP2, and DPP10 in the somatic surface and cytoplasm of Kv4.3(+) nociceptors. KChIP3 appears in most Aβ and Aδ sensory neurons as well as a small population of peptidergic nociceptors, whereas DPP6 is absent in sensory neurons. In the spinal cord, KChIP1 is coexpressed with Kv4.3 in the cell bodies of a subset of lamina II excitatory interneurons, while KChIP1, KChIP2, and DPP6 are colocalized with Kv4.2 and Kv4.3 in their dendrites. Within the dorsal horn, besides KChIP3 in the inner lamina II and lamina III, we detected DPP10 in most projection neurons, which transmit pain signal to brain. The results suggest the existence of Kv4/KChIP/DPPL ternary complexes in ISA -expressing nociceptors and pain-modulating spinal interneurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.