A B S T R A C T Aminopyridines (2-AP, 3-AP, and 4-AP) selectively block K channels of squid axon membranes in a manner dependent upon the membrane potential and the duration and frequency of voltage clamp pulses. They are effective when applied to either the internal or the external membrane surface. The steady-state block of K channels by aminopyridines is more complete for low depolarizations, and is gradually relieved at higher depolarizations. The K current in the presence of aminopyridines rises more slowly than in control, the change being more conspicuous in 3-AP and 4-AP than in 2-AP. Repetitive pulsing relieves the block in a manner dependent upon the duration and interval of pulses. The recovery from block during a given test pulse is enhanced by increasing the duration of a conditioning depolarizing prepulse. The time constant for this recovery is in the range of 10-20 ms in 3-AP and 4-AP, and shorter in 2-AP. Twin pulse experiments with variable pulse intervals have revealed that the time course for re-establishment of block is much slower in 3-AP and 4-AP than in 2-AP. These results suggest that 2-AP interacts with the K channel more rapidly than 3-AP and 4-AP. The more rapid interaction of 2-AP with K channels is reflected in the kinetics of K current which is faster than that observed in 3-AP or 4-AP, and in the pattern of frequencydependent block which is different from that in 3-AP or 4-AP. The experimental observations are not satisfactorily described by alterations of Hodgkin-Huxley ntype gating units. Rather, the data are consistent with a simple binding scheme incorporating no changes in gating kinetics which conceives of aminopyridine molecules binding to closed K channels and being released from open channels in a voltage-dependent manner.
The group-specific protein reagents, N-bromoacetamide (NBA) and N-bromosuccinimide (NBS), modify sodium channel gating when perfused inside squid axons. The normal fast inactivation of sodium channels is irreversibly destroyed by 1 mM NBA or NBS near neutral pH. NBA apparently exhibits an allor-none destruction of the inactivation process at the single channel level in a manner similar to internal perfusion of Pronase. Despite the complete removal of inactivation by NBA, the voltage-dependent activation of sodium channels remains unaltered as determined by (a) sodium current turn-on kinetics, (b) sodium tail current kinetics, (c) voltage dependence of steady-state activation, and (d) sensitivity of sodium channels to external calcium concentration. NBA and NBS, which can cleave peptide bonds only at tryptophan, tyrosine, or histidine residues and can oxidize sulfur-containing amino acids, were directly compared with regard to effects on sodium inactivation to several other reagents exhibiting overlapping protein reactivity spectra. N-acetylimidazole, a tyrosine-specific reagent, was the only other compound examined capable of partially mimicking NBA. Our results are consistent with recent models of sodium inactivation and support the involvement of a tyrosine residue in the inactivation gating structure of the sodium channel.
The effects of aminopyridines on ionic conductances of the squid giant axon membrane were examined using voltage clamp and internal perfusion techniques. 4-Aminopyridine (4-AP) reduced potassium currents, but had no effect upon transient sodium currents. The block of potassium channels by 4-AP was substantially less with (a) strong depolarization to positive membrane potentials, (b) increasing the duration of a given depolarizing step, and (c) increasing the frequency of step depolarizations. Experiments with high external potassium concentrations revealed that the effect of 4-AP was independent of the direction of potassium ion movement. Both 3- and 2-aminopyridine were indistinguishable from 4-AP except in potency. It is concluded that aminopyrimidines may be used as tools to block the potassium conductance in excitable membranes, but only within certain specific voltage and frequency limits.
The effects of ouabain, ATP, and vanadate on palytoxin induction of ion channels were examined with the aim of elucidating the role of Na,K-ATPase in palytoxin action. Palytoxin-induced membrane depolarization of crayfish giant axons and single channel currents of frog erythrocytes and mouse neuroblastoma N1E-115 cells were examined using the intracellular microelectrode and patch-clamp techniques. External application of palytoxin in nanomolar concentrations induced depolarization in the crayfish giant axons, and the depolarization was inhibited by pretreatment of the axon with ouabain (10 microM). Internally perfused axons were less sensitive to palytoxin unless ATP (6 mM) was added internally. In patch-clamp experiments, picomolar palytoxin in the patch electrode induced single channels in both cell-attached and inside-out patches of erythrocytes and neuroblastoma cells. The induced channels had a conductance of about 10 pS, reversed near 0 mV in physiological saline solution, and was permeable to Na+, K+, Cs+, and NH4+, but not to choline. Single channel activities induced by palytoxin were inhibited by ouabain (10 microM) and vanadate (1 mM), but promoted by ATP (1 mM). The modulating effects of ouabain, vanadate, and ATP on palytoxin action suggest that the Na,K-ATPase is involved in the induction of single channels by palytoxin. Palytoxin-induced and ouabain-inhibitable single channels were observed in planar lipid bilayer incorporated with purified Na,K-ATPase. The results indicate that an interaction between palytoxin and Na,K-ATPase leads to opening of a 10-pS ion channel. They further raise the possibility that a channel structure may exist in the sodium pump which is uncovered by the action of palytoxin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.