Ceria nanostructure-based catalysts have attracted much attention in recent years because of their unique physiochemical properties. Herein, we have presented a simple two-phase approach for the synthesis of ceria nanocrystals. Structural and morphological characterization by XRD and TEM showed that the as-synthesized monodisperse CeO2nanoparticles (NPs) had cubic fluorite crystal structure with average particle size about 6.75 nm. The effects of hydrothermal temperature, annealing time, and concentration of cerium nitrate on the nanostructures of the products were also investigated and discussed. In addition, the CeO2nanocrystals proved to be an effective catalyst for the photodegradation of blue methylene under UV illumination.
<p class="RSCB01COMAbstract"><span class="06CHeading"><span lang="EN-GB">Abstract: </span></span><span lang="EN-GB">Chitin nanocrystals in anisotropic liquid crystals have been used as a colloidal precursor to fabricate hydrogels and aerogels. Native chitin nanofibrils are deacetylated and hydrolyzed to generate rod-shaped chitin nanocrystals that are dispersible in water to form colloidal aqueous suspensions. Chitin nanocolloids self-organize into anisotropic liquid crystals that can solidify into layered nematic films. Chitin liquid crystals are hydrothermally gelatinized with formaldehyde crosslinkers to form homogeneous chitin hydrogels. The removal of water in the hydrogels by freeze-drying recovers ultralight chitin sponge-like aerogels with morphological retention of layered nematic chitin structure. These biocompatible chitin aerogels hold promise for developing advanced functional materials such as fabrics for antibacterial bandages and tissue engineering and hydrophobic absorbents for oil/water separation. Potentially, chitin nanocrystals assembled in the aerogels may be functionalized into hydrophobic sponges for oil/water separation or carbonized into nitrogen-doped carbon foams for supercapacitors.</span></p>
We present lightweight macro-mesoporous spinel CoAl2O4 nanostructured aerogels derived from water-soluble aluminum-chitosan complexes. Chitosan nanofibrils interact with aluminum ions to swell into hydrogels. The aluminum-induced swelling is extended to dissolve the hydrogels in water to form a homogeneous aluminum-chitosan aqueous solution. The addition of cobalt ions in the aluminum-chitosan liquids which are solidified by lyophilization to generate cotton-like aerogel composites. Uniform incorporation of cobalt-aluminum hydroxide ions onto chitosan leads nanofibrils to serve as a hierarchical template to support mixed metal hydroxides in the aerogel composites. We investigated the thermal removal of chitosan template in the composites to obtain spinel CoAl2O4 aerogels that truly replicate spider web-like fibrillar networks of chitosan template. Enlarged porosity, high crystallinity, and lightweight make the CoAl2O4 aerogels useful as a colorful nano-pigment for magnetic ceramics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.