Kinetic energy releases (KERs) in unimolecular fragmentations of singly and multiply charged ions provide information concerning ion structures, reaction energetics and dynamics. This topic is reviewed covering both early and more recent developments. The subtopics discussed are as follows: (1) introduction and historical background; (2) ion dissociation and kinetic energy release: kinematics; potential energy surfaces; (3) the kinetic energy release distribution (KERD); (4) metastable peak observations: measurements on magnetic sector and time-of-flight instruments; energy selected results by photoelectron photoion coincidence (PEPICO); (5) extracting KERDs from metastable peak shapes; (6) ion structure determination and reaction mechanisms: singly and multiply charged ions; biomolecules and fullerenes; (7) theoretical approaches: phase space theory (PST), orbiting transition state (OTS)/PST, finite heat bath theory (FHBT) and the maximum entropy method; (8) exit channel interactions; (9) general trends: time and energy dependences; (10) thermochemistry: organometallic reactions, proton-bound clusters, fullerenes; and (11) the efficiency of phase space sampling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.