In this paper, we present an efficient algorithm for 3D object recognition in presence of clutter and occlusions in noisy, sparse and unsegmented range data. The method uses a robust geometric descriptor, a hashing technique and an efficient RANSAC-like sampling strategy. We assume that each object is represented by a model consisting of a set of points with corresponding surface normals. Our method recognizes multiple model instances and estimates their position and orientation in the scene. The algorithm scales well with the number of models and its main procedure runs in linear time in the number of scene points. Moreover, the approach is conceptually simple and easy to implement. Tests on a variety of real data sets show that the proposed method performs well on noisy and cluttered scenes in which only small parts of the objects are visible.
Abstract-In this paper, we present an efficient 3D object recognition and pose estimation approach for grasping procedures in cluttered and occluded environments. In contrast to common appearance-based approaches, we rely solely on 3D geometry information. Our method is based on a robust geometric descriptor, a hashing technique and an efficient, localized RANSAC-like sampling strategy. We assume that each object is represented by a model consisting of a set of points with corresponding surface normals. Our method simultaneously recognizes multiple model instances and estimates their pose in the scene. A variety of tests shows that the proposed method performs well on noisy, cluttered and unsegmented range scans in which only small parts of the objects are visible. The main procedure of the algorithm has a linear time complexity resulting in a high recognition speed which allows a direct integration of the method into a continuous manipulation task. The experimental validation with a 7-degrees-of-freedom Cartesian impedance controlled robot shows how the method can be used for grasping objects from a complex random stack. This application demonstrates how the integration of computer vision and softrobotics leads to a robotic system capable of acting in unstructured and occluded environments.
In this paper, a new method for deformable 3D shape registration is proposed. The algorithm computes shape transitions based on local similarity transforms which allows to model not only as-rigid-as-possible deformations but also local and global scale. We formulate an ordinary differential equation (ODE) which describes the transition of a source shape towards a target shape. We assume that both shapes are roughly pre-aligned (e.g., frames of a motion sequence). The ODE consists of two terms. The first one causes the deformation by pulling the source shape points towards corresponding points on the target shape. Initial correspondences are estimated by closestpoint search and then refined by an efficient smoothing scheme. The second term regularizes the deformation by drawing the points towards locally defined rest positions. These are given by the optimal similarity transform which matches the initial (undeformed) neighborhood of a source point to its current (deformed) neighborhood. The proposed ODE allows for a very efficient explicit numerical integration. This avoids the repeated solution of large linear systems usually done when solving the registration problem within general-purpose non-linear optimization frameworks. We experimentally validate the proposed method on a variety of real data and perform a comparison with several state-of-the-art approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.