The transmission of malaria by blood transfusion was one of the first recorded incidents of transfusion-transmitted infections (TTIs). Although the World Health Organization (WHO) recommends that blood for transfusion should be screened for TTIs, malaria screening is not performed in most malaria-endemic countries in sub-Saharan Africa (SSA). The transfusion of infected red blood cells may lead to severe post-transfusion clinical manifestations of malaria, which could be rapidly fatal. Ensuring that blood supply in endemic countries is free from malaria is highly problematical, as most of the donors may potentially harbour low levels of malaria parasites. Pre-transfusion screening within endemic settings has been identified as a cost-effective option for prevention of transfusion-transmitted malaria (TTM). But currently, there is no screening method that is practical, affordable and suitably sensitive for use by blood banks in SSA. Even if this method was available, rejection of malaria-positive donors would considerably jeopardize the blood supply and increase morbidity and mortality, especially among pregnant women and children who top the scale of blood transfusion users in SSA. In this context, the systematic prophylaxis of recipients with anti-malarials could constitute a good alternative, as it prevents any deferral of donor units as well as the occurrence of TTM. With the on-going programme, namely the Affordable Medicine Facility - Malaria, there is an increase in the availability of low-priced artemisinin-based combination therapy that can be used for systematic prophylaxis. It appears nonetheless an urgent need to conduct cost-benefit studies in order to evaluate each of the TTM preventive methods. This approach could permit the design and implementation of an evidence-based measure of TTM prevention in SSA, advocating thereby its widespread use in the region.
In 2009, Influenza A(H1N1)pdm09 caused the first influenza pandemic of the 21st century with high mortality rates of about 284 500 deaths. This virus, however, continues to circulate as a seasonal influenza virus and to cause illness and deaths worldwide. In this study, we describe the genetic diversity of A(H1N1)pdm09 viruses collected between 2014 and 2016 in Cameroon. Three gene segments (HA, NA and M) of Cameroon strains were studied. The phylogenetic tree of the coding nucleotide sequences was generated by MEGA version 6.0 using a Maximum Likelihood method. The NA and M protein coding sequences were analyzed for the reported genetic markers of resistance against neuraminidase inhibitors and adamantanes, while predicted vaccine efficacy was estimated using the Pepitope method. Overall 39 strains were obtained. Phylogenetic analysis of the HA gene of influenza A(H1N1)pdm09 showed that Cameroon strains belonged to two major clades. The 2014 Cameroon sequences belonged to clade 6C while all sequences collected between 2015 and 2016 belonged to clade 6B. Majority of the samples had some mutations in the NA gene notably: I117M, N248D, and N369K while the amantadine-resistant M mutant, S31N, was found to be absent only in the two sequences collected in 2014. Overall, A/California/07/2009 vaccine strain showed a predicted vaccine efficacy of 24.55% to 35.77% against Cameroon A(H1N1)pdm09 strains circulating between 2014 and 2016. Our findings confirms the fast evolution of A(H1N1)pdm09 since its first introduction and highlights on the importance of influenza vaccine in reducing the burden caused by influenza in the community.
In Cameroon, genome characterization of influenza virus has been performed only in the Southern regions meanwhile genetic diversity of this virus varies with respect to locality. The Northern region characterized by a Sudan tropical climate might have distinct genetic characterization. This study aimed to better understand the genetic diversity of influenza A(H3N2) viruses circulating in Northern Cameroon. Sequences of three gene segments (hemagglutinin (HA), neuraminidase (NA) and matrix (M) genes) were obtained from 16 A(H3N2) virus strains collected during the 2014 to 2016 influenza seasons in Garoua. The HA gene segments were analysed with respect to reference strains while the NA and M gene was analysed for reported genetic markers of resistance to antivirals. Analysis of the HA sequences revealed that majority of the virus strains grouped together with the 2016‐2017 vaccine strain (3C.2a‐A/Hong Kong/4801/2014) while 3/5 (60%) of the 2015 viral strains grouped together with the 2015‐2016 vaccine strain 3C.3a‐A/Switzerland/9715293/2013. Within clade 3C.2a, Northern Cameroon sequences mostly grouped in sub‐clade A3 (10/16). Analysis of the coding regions of the NA and M genes showed that none had genetic markers of resistance to neuraminidase inhibitors but all strains possessed the S31N substitution of resistance to amantadine. Due to some discrepancies observed in this region with respect to the Southern regions of Cameroon, there is necessity of including all regions within a country in the sentinel surveillance of influenza. These data will enable to track changes in influenza viruses in Cameroon.
Since the recent emergence of several subtypes of influenza viruses with pandemic potentials, there has been growing interest on the control of this infection worldwide. This study aimed to describe the 10 years of influenza activity in Cameroon between January 2009 and December 2018. Respiratory samples were collected from sentinel sites responsible for influenza surveillance in Cameroon and analyzed for the presence of influenza. Globally, 9 of the 10 administrative regions of the country were represented with at least 1 year of data. A total of 11816 respiratory samples were collected and influenza virus detection rate was 24.0%. The most represented age group was the 0–1 years representing more than 40% of the collected samples and possessing the lowest proportion of influenza cases (16.2%). Meanwhile higher proportions of influenza positive cases was found in the 2–4, 5–14 and 15–49 years age group at ≥29%. Among outpatients, the frequency of influenza virus was 24.8% while in hospitalized patients, 18.7% of samples were positive for influenza virus. We noted year-round circulation of influenza virus in Cameroon with 2 peaks in activity: a major peak in the months of September to December and a minor peak in the months of March to July. Antigenic characterization of influenza isolates showed 37.5% (6/16) vaccine match between the predominant Cameroon strains and the Northern hemisphere vaccine strains with majority of vaccine match observed in influenza B/Victoria subtype (4/6; 66.7%). Data collected from this surveillance system is essential to add to global information on the spread of influenza.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.