This work investigated the mechanical properties and phase morphology of poly(lactic acid) (PLA)/acrylonitrile-butadiene rubber (NBR) blends and nanocomposites, which prepared by melt blending in an internal mixer. The contents of NBR were 5, 10, 15 and 20 wt% and the content of organoclay was 3 phr. The impact test showed that the impact strength of PLA/NBR blends increased with an increase of NBR content and the impact strength of the blends was more than eight times by adding NBR 10 wt% when compared with neat PLA. The tensile test showed that Young’s modulus and tensile strength of PLA/NBR blends and nanocomposites decreased after adding NBR and organoclay. While the strain at break of the NBR blends increased with increasing NBR content. This result is attributed to the rubber phase in NBR in a cause the increment of elongation and elasticity in PLA/NBR blends. The morphology of PLA/NBR blends observed the fractured surface was rougher than that of pure PLA. This observation indicates that the addition of NBR in PLA can change the brittle fracture of PLA to ductile fracture, which has an effect to the strain at break or elongation of PLA. However, the morphology of the PLA/NBR blends were also observed the phase separation of the dispersed NBR phase and PLA matrix phase, and appeared the voids in a polymer matrix. The addition of organoclay had an effect slightly on the morphology of the blends. From X-ray diffraction, results found that PLA/organoclay and PLA/NBR/organoclay nanocomposites showed the intercalated structure, which PLA chains were inserted into the interlayer of clay due to the increase of d-spacing.
The effects of the montmorillonite clay surface modified with 25-30 wt% of methyl dihydroxyethyl hydrogenated tallow ammonium (Clay-MHA) on morphology and mechanical properties of poly(lactic acid) (PLA)/acrylonitrile-butadiene rubber copolymer (NBR)/Clay-MHA composites were investigated. The composites of blends of PLA/NBR with Clay-MHA were prepared by melt mixing in an internal mixer and molded by compression molding. The ratio of PLA and NBR was 80/20 by weight and the Clay-MHA content was 1, 3, 5 and 7 phr. The results showed Young’s modulus and stress at break of the composites increased with increasing Clay-MHA content. While the tensile strength and strain at break of the composites decreased with increasing Clay-MHA content. Scanning electron microscopy analysis showed that the addition of Clay-MHA could improve the miscibility of PLA and NBR to be homogeneous blends and the pore in polymer blends was disappeared.
The effects of the montmorillonite clay surface modified with 0.5-5 wt% aminopropyltriethoxysilane and 15-35 wt% octadecylamine (Clay-ASO) and polyethylene-g-maleic anhydride (PE-g-MA) on morphology and mechanical properties of poly (lactic acid) (PLA)/acrylonitrile-butadiene rubber copolymer (NBR) blends were investigated and compared. The PLA/NBR blends and composites were prepared by melt mixing in an internal mixer and molded by compression molding. The ratio of PLA and NBR was 80/20 by weight and the Clay-ASO and PE-g-MA contents were 3, 5 and 7 phr. The morphology analysis showed that the addition of Clay-ASO and PE-g-MA at high content could improve the miscibility of PLA and NBR to be homogeneous blends due to the voids in the polymer matrix were decreased. The tensile properties showed Young’s modulus of the PLA/NBR/Clay-ASO composites was more than that of the PLA/NBR blends and Young’s modulus of composites increased with increasing Clay-ASO content, while the tensile strength and strain at break decreased with increasing Clay-ASO content. The incorporation of PE-g-MA 3 phr could improve the tensile strength, stress at break and strain at break of PLA/NBR blends.
This research prepared poly(lactic acid) (PLA) and PLA/acrylonitrile-butadiene rubber (NBR) blends before and after adding polyethylene-g-maleic anhydride with 3 wt% of maleic anhydride (PE-g-MA3) 3 phr. The effects of NBR and PE-g-MA3 on morphological, mechanical and thermal properties of PLA and PLA blends were discussed. The morphological analysis observed the two-phase morphology of PLA/NBR blends, and it was observed the cavities generated due to NBR phase detachment during sample fracture, and droplets of NBR phase at higher NBR content. The PE-g-MA3 addition could improve adhesion between PLA and NBR phases due to the decrease of cavities in PLA matrix and droplet size of NBR. The mechanical properties showed the impact strength and strain at break of PLA/NBR blends dramatically increased when the amount of NBR increasing. The addition of PE-g-MA3 significantly improved the impact strength of PLA/NBR blends. The thermal properties showed the NBR addition had effect slightly on the melting temperature of PLA/NBR blends. The filling of NBR and PE-g-MA3 greatly decreased the percent crystallinity of PLA more than two times. The thermal degradation of pure PLA and NBR proceeds by one step, while the thermal degradation process of PLA/NBR and PLA/PE-g-MA3 proceeds by two steps. Which the first step showed a large mass loss of PLA degradation and the second step showed a small mass loss of PE-g-MA and NBR degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.