International audienceThis article investigates the emptying process of a continuous powder mixer, from both experimental and modelling points of view. The apparatus used in this work is a pilot scale commercial mixer Gericke GCM500, for which a specific experimental protocol has been developed to determine the hold up in the mixer and the real outflow. We demonstrate that the dynamics of the process is governed by the rotational speed of the stirrer, as it fixes characteristic values of the hold-up weight, such as a threshold hold-up weight. This is integrated into a Markov chain matrix representation that can predict the evolution of the hold-up weight, as well as that of the outflow rate during emptying the mixer. Depending on the advancement of the process, the Markov chain must be considered as non-homogeneous. The comparison of model results with experimental data not used in the estimation procedure of the parameters contributes to validating the viability of this model. In particular, we report results obtained when emptying the mixer at variable rotational speed, through step changes
Continuous powder processes, such as continuous powder mixing, are more than ever envisioned as a viable alternative to batch equipment, in various industries such as pharmaceuticals, specialty chemicals (zeolites, SiC), bio-renewables or food. In the present work we have implemented an on-line image analysis setup that is able to capture all the images of the particles at the outlet of a continuous pilot-scale mixer. This allows the determination of the homogeneity of mixtures of two different compositions, as well as the analysis of their evolution during steady-state and transitory regimes. The importance of a proper definition of the scale of scrutiny of the mixture is emphasized by providing homogeneity results obtained at four different scales. Evidence of segregation by percolation giving rise to the enrichment of the mixer's bed with fine particles is given and commented. The impact of the stirrer's rotational speed on the quality of the mixtures, as provided by the coefficient of variation CV, is reported. Up to 20 Hz, CV's are extremely high, while above 30 Hz, the influence of the impeller speed is much weaker. Finally, the influence of impeller speed's step perturbations is measured and commented. Due to the size-segregation phenomenon inside the mixer, negative steps are deeply detrimental to the mixing process. On the contrary, positive steps can be absorbed by the equipment without degradation of the quality of the mixtures.
OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 9970 a b s t r a c tOver recent years there has been increasing interest in continuous powder mixing processes, due mainly to the development of on-line measurement techniques. However, our understanding of these processes remains limited, particularly with regard to their flow and mixing dynamics. In the present work, we study the behaviour of a pilot-scale continuous mixer during transitory regimes, in terms of hold-up weight and outflow changes. We present and discuss experimental results concerning the start-up dynamics of a Gericke GCM 500 mixer, for which a specific experimental protocol has been developed to determine the evolution of the hold-up in the mixer and the real outflow. Empirical relationships are derived so as to link hold-up weight variations with operating conditions. A simple stochastic approach, based on a non-homogeneous Markov chain, is developed to simulate the bulk particle flow and transport in the continuous mixer at a macroscopic level. Although this simple model is only based on the start-up behaviour, it provides a full description of the mixer dynamics in response to strong perturbations on the flow rate or on the rotational speed of the stirring device, such as negative or positive steps. This model is validated experimentally for a wide range of operating conditions, and constitutes a first approach to process control.
Continuous powder mixing is gaining interest in the industrial community concerned with more and more functional powder products. The understanding of powder flow and mixing/segregation of particles as well as their translation into models that can be used in process monitoring and control is a major issue. In the present work, we describe the development of different mesoscopic Markov chain models that are based on interconnected compartments or cells delimited in the mixing chamber. The general structure of the chain allows the derivation of either homogeneous or non-homogeneous markovian models, for which transition probabilities are state-dependent. The models can be adapted to simulate variations of outflow rate, outlet mixture composition, holdup weights and the distribution of these at the level of the compartments, during processing, including stationary and transitory phases. This is applied to a Gericke 500 GCM® continuous mixer for either pure powders or their mixtures, in the latter case through the consideration of a Markov chain for each component. The models are fed by independent experiments that allow for the determination of the probabilities and the rules governing their change with the processing step, in particular during the transitory regimes. Agreement is found between model calculation and experimental data for a wide range of configurations. The models can catch the variations of holdup weights and internal or outlet flow rates at any rotational stirrer's speed during mixer start and steady state. They can reproduce the variations of the outflow rate, and therefore mixture composition, when dealing with a mixture of two components. This is also presented for two nominal compositions. Conclusions are drawn in terms of process monitoring and control. It gives insights for process intensification, in particular for mixer design and the feeding configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.