STUDY QUESTION Are phthalate metabolite concentrations in follicular fluid (FF) associated with the expression of extracellular vesicle microRNAs (EV-miRNAs)? SUMMARY ANSWER Phthalate metabolite concentrations are associated with the expression of EV-miRNA and their associated pathways in FFs. WHAT IS KNOWN ALREADY Phthalate metabolites were recently detected in FF. Urinary phthalate metabolite concentrations alter the expression of EV-miRNAs in FF. STUDY DESIGN, SIZE, DURATION Prospective study including 105 women recruited between January 2014 and August 2016 in a tertiary university-affiliated hospital. PARTICIPANTS/MATERIALS, SETTING, METHODS We assessed FF concentrations of 12 phthalate metabolites. EV-miRNAs were isolated from aliquots of the same FF, and their expression profiles were measured using a human miRNA panel. Associations between EV-miRNAs that were present in >50% of the samples and phthalate metabolites that were measured in >74% of the FF samples were tested. Genes regulated by EV-miRNAs that were found to be significantly (false discovery rate q-value < 0.1) correlated with FF-phthalates were analyzed for pathways linked with female fertility using miRWalk2.0 Targetscan database, DAVID Bioinformatics Resources and Kyoto Encyclopedia of Genes and Genomes (KEGG). MAIN RESULTS AND THE ROLE OF CHANCE Of 12 phthalate metabolites, 11 were measured in at least one FF sample. Mono (6-COOH-2-methylheptyl) phthalate (MCOMHP), mono-2-ethyl-5-carboxypentyl phthalate (mECPP), mono-n-butyl phthalate (MnBP), monobenzyl phthalate (MBzP), mono-isobutyl phthalate (MiBP), monoethyl phthalate (MEP) and mono (7-COOH-2-methyloctyl) phthalate (MCOMOP) were detected in more than 74% of the samples. Of 754 EV-miRNAs tested, 39 were significantly associated either with MEP, MBzP, MCOMOP, MCOMHP and/or with mECPP, after adjusting for multiple testing (P < 0.05). KEGG-based pathway enrichment analysis of the genes regulated by these miRNAs showed that these EV-miRNAs may be involved in pathways related to ovary or oocyte development, maturation and fertilization. LIMITATIONS, REASONS FOR CAUTION The use of miRNA panel array limits the number of potential relevant miRNAs. Moreover, several of the phthalate metabolites examined may be biased due to internal (enzymatic activity) or external (contamination in medical interventions) causes. WIDER IMPLICATIONS OF THE FINDINGS Phthalate metabolites may alter follicular EV-miRNAs profile and thus impair pathways that are involved with oocyte development, maturation and fertilization. Our results contribute to understanding of possible mechanism(s) in which endocrine disruptor chemicals interfere with female fertility. STUDY FUNDING/COMPETING INTERESTS This work was supported by the National Institutes of Environmental Health Sciences [Grant R21-ES024236]; and Environmental Health Fund, Israel [Grant 1301], no competing interests. TRIAL REGISTRATION NUMBER N/A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.