The purpose of this study is to investigate the numerical model of heat and mass transfer during freezing process for various arrangements of porous layers within a rectangular enclosure. The numerical model for energy conservation in solid and liquid regions was solved by using the differential equations under the local thermal equilibrium condition (LTE). All governing equations with the entire computational domain including all regions were solved by the finite element method. A simulation model was established through the analysis based on two constraints: 1) the Boussinesq approach which considered in buoyancy term with the function of density inversion and 2) the local thermal condition. According to this model, the numerical predictions of velocity field in unfrozen zone reveal different flow behaviors resulting from the freezing load and layer arrangement. Some cases, such behaviors also depend on the operating time due to the increase of the frozen layer thickness which affect permeability. The velocity change in unfrozen zone also results in the moving rate and the shape of freezing front. Furthermore, it indicated that the characteristics of freezing process were dominated by freezing load and permeability in each layer. The 2-D model from this study reasonably correspond to the literatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.