We formulate and analyze a new finite difference scheme for a shallow water model in the form of viscous Burgers-Poisson system with periodic boundary conditions. The proposed scheme belongs to a family of three-level linearized finite difference methods. It is proved to preserve both momentum and energy in the discrete sense. In addition, we proved that the method converges uniformly and has second order of accuracy in space. The analysis given in this work is the first time a pointwise error estimation is done on a second-order finite difference operator applied to the Burgers-Poisson system. We validate our findings by performing various numerical simulations on both viscous and inviscous problems. These numerical examples show the efficacy of the proposed method and confirm the proven theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.