BackgroundBreast cancer (BC) is the most prevalent cancer in women and a major public health problem in Morocco. Several Moroccan studies have focused on studying this disease, but more are needed, especially at the genetic and molecular levels. Therefore, we investigated the potential association of several functional germline variants in the genes commonly mutated in sporadic breast cancer.MethodsIn this case–control study, we examined 36 single nucleotide polymorphisms (SNPs) in 13 genes (APOBEC3A, APOBEC3B, ARID1B, ATR, MAP3K1, MLL2, MLL3, NCOR1, RUNX1, SF3B1, SMAD4, TBX3, TTN), which were located in the core promoter, 5’-and 3’UTR or which were nonsynonymous SNPs to assess their potential association with inherited predisposition to breast cancer development. Additionally, we identified a ~29.5-kb deletion polymorphism between APOBEC3A and APOBEC3B and explored possible associations with BC. A total of 226 Moroccan breast cancer cases and 200 matched healthy controls were included in this study.ResultsThe analysis showed that12 SNPs in 8 driver genes, 4 SNPs in APOBEC3B gene and 1 SNP in APOBEC3A gene were associated with BC risk and/or clinical outcome at P ≤ 0.05 level. RUNX1_rs8130963 (odds ratio (OR) = 2.25; 95 % CI 1.42-3.56; P = 0.0005; dominant model), TBX3_rs8853 (OR = 2.04; 95 % CI 1.38-3.01; P = 0.0003; dominant model), TBX3_rs1061651 (OR = 2.14; 95 % CI1.43-3.18; P = 0.0002; dominant model), TTN_rs12465459 (OR = 2.02; 95 % confidence interval 1.33-3.07; P = 0.0009; dominant model), were the most significantly associated SNPs with BC risk. A strong association with clinical outcome were detected for the genes SMAD4 _rs3819122 with tumor size (OR = 0.45; 95 % CI 0.25-0.82; P = 0.009) and TTN_rs2244492 with estrogen receptor (OR = 0.45; 95 % CI 0.25-0.82; P = 0.009).ConclusionOur results suggest that genetic variations in driver and APOBEC3 genes were associated with the risk of BC and may have impact on clinical outcome. However, the reported association between the deletion polymorphism and BC risk was not confirmed in the Moroccan population. These preliminary findings require replication in larger studies.
TP53 is a tumor suppressor gene involved in cell cycle progression control, DNA damage repair, genomic stability, and apoptosis. Some polymorphisms in this gene have been associated with the development of a number of cancers including breast carcinoma. PIN3 Ins16bp polymorphism has been widely studied in different populations for an association with breast cancer risk. In most case-control studies, a duplicated allele has been more frequent in cases rather than controls but there are also inconsistent results. The present study aimed to assess the association of PIN3 Ins16bp polymorphism of p53 with breast cancer risk in Moroccan population. This case-control study was performed on 105 female patients with confirmed breast cancer and 114 healthy controls. The genotype frequency was 69.5 % (A1A1), 26.7 % (A1A2), and 3.8 % (A2A2) in patients and 68.4 % (A1A1), 24.6 % (A1A2), and 7 % (A2A2) in controls. No statistically significant association was observed between PIN3 Ins16bp polymorphism and breast cancer risk with odds ratio of 1.07 (confidence interval (CI) = 0.58-1.97, p = 0.83) for the heterozygous A1A2 and 0.53 (CI = 0.15-1.85, p = 0.32) for mutated homozygous A2A2.According to our preliminary genetic analysis, PIN3 Ins16pb polymorphism could not be assessed as a marker of risk factor for predisposition to breast cancer in Moroccan population. However, a high frequency of A2 allele (19.3 %) in our population suggested that PIN3 Ins16pb polymorphism may be a valuable marker for study in other cancers with larger groups.
PurposeThe cell-cycle checkpoint kinase 2 (CHEK2) is an important signal transducer of cellular responses to DNA damage, whose defects has been associated with increased risk for breast cancer. The CHEK2 1100delC mutation has been reported to confer a twofold increased risk of breast cancer among carriers. The frequency of the mutation varies among populations. The highest frequency has been described in Northern and Eastern European countries. However, the 1100delC mutation has been investigated in different case-control studies and none in Moroccan population. The aim of this study was to evaluate the prevalence of this variant and determine its contribution to the development of breast cancer in sporadic cases and also in members of breast cancer families who tested negative or positive for a deleterious mutation in BRCA1/BRCA2.MethodsIn this case-control study we performed the CHEK2 1100delC mutation analysis by ASO-PCR in 134 breast cancer patients and 114 unaffected control individuals. Most of these families had several cases of breast cancer or ovarian cancer (or both).ResultsNo CHEK2 1100delC mutations were detected in any of 134 individuals, including 59 women diagnosed with breast cancer at an early age (<40 years), 10 women with bilateral breast cancer, and 6 women with ovarian cancer.ConclusionOur preliminary genetic analysis are consistent with the reported very low frequency of CHEK2 1100delC mutation in North American populations (compared with Northern Europe), rendering CHEK2 1100delC such as an unlikely to be major breast cancer susceptibility genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.