Convergent gene pairs with head-to-head configurations are widespread in both eukaryotic and prokaryotic genomes and are speculated to be involved in gene regulation. Here we present a unique mechanism of gene regulation due to convergent transcription from the antagonistic prgX/prgQ operon in Enterococcus faecalis controlling conjugative transfer of the antibiotic resistance plasmid pCF10 from donor cells to recipient cells. Using mathematical modeling and experimentation, we demonstrate that convergent transcription in the prgX/prgQ operon endows the system with the properties of a robust genetic switch through premature termination of elongating transcripts due to collisions between RNA polymerases (RNAPs) transcribing from opposite directions and antisense regulation between complementary counter-transcripts. Evidence is provided for the presence of truncated RNAs resulting from convergent transcription from both the promoters that are capable of sense-antisense interactions. A mathematical model predicts that both RNAP collision and antisense regulation are essential for a robust bistable switch behavior in the control of conjugation initiation by prgX/prgQ operons. Moreover, given that convergent transcription is conserved across species, the mechanism of coupling RNAP collision and antisense interaction is likely to have a significant regulatory role in gene expression.inverse expression | overlapping DNA | gene-regulatory network
Conjugation is one of the most common ways bacteria acquire antibiotic resistance, contributing to the emergence of multidrugresistant "superbugs." Bacteria of the genus Enterococcus faecalis are highly antibiotic-resistant nosocomial pathogens that use the mechanism of conjugation to spread antibiotic resistance between resistance-bearing donor cells and resistance-deficient recipient cells. Here, we report a unique quorum sensing-based communication system that uses two antagonistic signaling molecules to regulate conjugative transfer of tetracycline-resistance plasmid pCF10 in E. faecalis. A "mate-sensing" peptide sex pheromone produced by recipient cells is detected by donor cells to induce conjugative genetic transfer. Using mathematical modeling and experimentation, we show that a second antagonistic "self-sensing" signaling peptide, previously known to suppress self-induction of donor cells, also serves as a classic quorum-sensing signal for donors that functions to reduce antibiotic-resistance transfer at high donor density. This unique form of quorum sensing may provide a means of limiting the spread of the plasmid and present opportunities to control antibiotic-resistance transfer through manipulation of intercellular signaling, with implications in the clinical setting.
In recent times, stochastic treatments of gene regulatory processes have appeared in the literature in which a cell exposed to a signaling molecule in its environment triggers the synthesis of a specific protein through a network of intracellular reactions. The stochastic nature of this process leads to a distribution of protein levels in a population of cells as determined by a Fokker-Planck equation. Often instability occurs as a consequence of two (stable) steady state protein levels, one at the low end representing the “off” state, and the other at the high end representing the “on” state for a given concentration of the signaling molecule within a suitable range. A consequence of such bistability has been the appearance of bimodal distributions indicating two different populations, one in the “off” state and the other in the “on” state. The bimodal distribution can come about from stochastic analysis of a single cell. However, the concerted action of the population altering the extracellular concentration in the environment of individual cells and hence their behavior can only be accomplished by an appropriate population balance model which accounts for the reciprocal effects of interaction between the population and its environment. In this study, we show how to formulate a population balance model in which stochastic gene expression in individual cells is incorporated. Interestingly, the simulation of the model shows that bistability is neither sufficient nor necessary for bimodal distributions in a population. The original notion of linking bistability with bimodal distribution from single cell stochastic model is therefore only a special consequence of a population balance model.
There is increasing recognition that stochasticity involved in gene regulatory processes may help cells enhance the signal or synchronize expression for a group of genes. Thus the validity of the traditional deterministic approach to modeling the foregoing processes cannot be without exception. In this study, we identify a frequently encountered situation, i.e., the biofilm, which has in the past been persistently investigated with intracellular deterministic models in the literature. We show in this paper circumstances in which use of the intracellular deterministic model appears distinctly inappropriate. In Enterococcus faecalis, the horizontal gene transfer of plasmid spreads drug resistance. The induction of conjugation in planktonic and biofilm circumstances is examined here with stochastic as well as deterministic models. The stochastic model is formulated with the Chemical Master Equation (CME) for planktonic cells and Reaction-Diffusion Master Equation (RDME) for biofilm. The results show that although the deterministic model works well for the perfectly-mixed planktonic circumstance, it fails to predict the averaged behavior in the biofilm, a behavior that has come to be known as stochastic focusing. A notable finding from this work is that the interception of antagonistic feedback loops to signaling, accentuates stochastic focusing. Moreover, interestingly, increasing particle number of a control variable could lead to an even larger deviation. Intracellular stochasticity plays an important role in biofilm and we surmise by implications from the model, that cell populations may use it to minimize the influence from environmental fluctuation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.