We study higher-order boundary value problems (HOBVP) for higher-order nonlinear differential equation. We make comparison among differential transformation method (DTM), Adomian decomposition method (ADM), and exact solutions. We provide several examples in order to compare our results. We extend and prove a theorem for nonlinear differential equations by using the DTM. The numerical examples show that the DTM is a good method compared to the ADM since it is effective, uses less time in computation, easy to implement and achieve high accuracy. In addition, DTM has many advantages compared to ADM since the calculation of Adomian polynomial is tedious. From the numerical results, DTM is suitable to apply for nonlinear problems.
A novel method for establishing solutions to non-linear ordinary differential equations AIP Conf.Abstract. In this study, we solve fifth-order boundary value problems by using the DTM for linear and nonlinear differential equations and compare the results with other methods such as Adomian Decomposition Method (ADM), Noor Decomposition Method and Variational Iteration Method. We provide several numerical examples in order to show the accuracy of the method. Further, we also solve sixth-order nonlinear boundary value problems and compare the result to ADM. The present study shows that the DTM is able to provide good results with high accuracy and the method is also easy to apply.
This paper aims to propose and investigate the application of Multistep Modified Reduced Differential Transform Method (MMRDTM) for solving the nonlinear Korteweg-de Vries (KdV) equation. The proposed technique has the advantage of producing an analytical approximation in a fast converging sequence with a reduced number of calculated terms. MMRDTM is presented with some modification of the reduced differential transformation method (RDTM) which is the nonlinear term is replaced by related Adomian polynomials and then adopting a multistep approach. Consequently, the obtained approximation results do not only involve smaller number of calculated terms for the nonlinear KdV equation, but also converge rapidly in a broad time frame. We provided three examples to illustrates the advantages of the proposed method in obtaining the approximation solutions of the KdV equation. To depict the solution and show the validity and precision of the MMRDTM, graphical inputs are included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.