The efficacy of tree injected with emamectin benzoate (EB) against the Asian long-horned beetle (ALB) was tested in a heavily infested willow forest in Beijing, China. In a 1.7-ha plot, 240 out of 310 trees were treated with two EB formulations at various rates. After fall application, the larval population decreased by 89% in the following spring and by >99% during the second year detected by monitoring new frass emission from marked holes. Consequently, the number of exit holes of emerging adults decreased to 0 in the second year. Re-infestation occurred in the third year after application. This high efficacy and lasting activity might be contributed to: a) a favorable translocation of EB in trees when injected into the sapwood; b) the high intrinsic activity against ALB larvae with LC50 of 20–30 ppb; and c) a reduced lifespan of ALB adults by over 60% when feeding on twigs of EB-treated trees. On untreated control trees, the larval population decreased during the first winter. In the second year after application, the larval population was wiped out during winter and a re-infestation started from border trees by adults flying in from outside the trial plot. This pattern indicates an eradication of the ALB population in the 1.7-ha plot can be expected 2 yr after EB treatment. The benefit of treating with EB on the surrounding population was observed in both the untreated trees and imidacloprid-treated trees, suggesting that treatment of EB benefits both the treated trees and the surrounding trees in the area.
Pantoea sp. strain CCBC3-3-1, having antagonistic activity against Verticillium dahlia, was isolated from Cotinus coggygria. We report the complete genome sequence of this strain determined by PacBio single-molecule real-time (SMRT) technology. The total genome size of CCBC3-3-1 is 5,159,767 bp, with a G+C content of 48.08%.
For this paper, GREENSPAN sap flow system was used to monitor the dynamics of trunk sap flow of Gingkgo biloba. Results indicate that sap flow velocity is significantly different among different heights, depths, and directions of the trunk. Sap flow velocity at the upper position of the trunk is higher than that of the middle and lower position, but cumulative flux is not significantly different among the upper, middle and lower sections. Sap flow velocity at 10 mm reached the most and that at 20 mm the least. However, sap flow velocity at 5 mm and 15 mm was similar and was second among the four depths. Results also showed that sap flow velocity of the south was the highest, and that of the west was next. An Automatic Weather Station of HOBO was synchronously applied to measure these meteorological parameters, and the relationship between these parameters and the changes of trunk sap flow velocity were analyzed. We found that the change of sap flow velocity was a single-crest curve on clear days and multi-crest curve on cloudy and rainy days. In addition, it is also revealed that by stepwise regression analyses photosynthetical active radiation (PAR), temperature and wind speed are the main environmental factors affecting sap flow velocity. The efficient methods of reducing water transpiration of trees, including leaf pruning, overshadowing and antitranspirant spraying, were found by investigating the effects on inhibiting transpiration, which indicated that spraying of antitranspirants, leaf pruning and overshadowing could significantly reduce transpiration but the effects of leaf pruning and overshadowing were far better than that of antitranspirant spraying.
Brown slime flux seeps slowly out of wounds and flows down the bark of roadside Populus tomentosa in Beijing, China. Two bacterial isolates, SL2‐2 and SL3‐3, obtained from the brown slime flux were identified as Providencia rettgeri based on 16S rRNA gene sequencing. After inoculation into the bark of roadside P. tomentosa with sterile deionized water as a control, both SL2‐2 and SL3‐3 triggered the seepage of brown slime flux from the wounds; no slime flux arose from the control. In conclusion, P. rettgeri was the pathogenic bacterium causing brown slime flux on P. tomentosa probably by inhibiting wound healing. To our knowledge, this is the first report of P. rettgeri as a pathogen of plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.