Characterizations of microwave-induced titanate nanotubes (NaxH(2-x)Ti3O7, TNTs) were conducted by the determinations of specific surface area (S(BET)), X-ray diffraction (XRD), X-ray photoelectron spectroscopic (XPS), ionic coupled plasma-atomic emission spectrometry(ICP-AES), scanning electron microscopy/ energy dispersive X-ray (SEM/EDX), and high-resolution transmission electron microscopy (HR-TEM). The applied level of microwave irradiation during the fabrication process is responsible for both the intercalation intensity of Na atoms into TNTs and the type of crystallization phase within TNTs, which dominate the efficiency of photocatalytic NH3/NH4+. A pure TNT phase presents no powerful ability toward photocatalytic NH3/ NH4+, while the photocatalytic efficiency can be enhanced with the presence of a rutile phase within TNTs. In addition, the mixture of anatase and rutile phase within P25 TiO2 prefers forming NO3-, whereas TNTs yield higher NO2- amount Regarding the effect of acid-washing treatment on TNTs, the acid-treated TNTs with enhanced ion exchangeability considerably improve the NH3/NH4+ degradation and NO2-/NO3- yields. This result is likely ascribed to the easy intercalation of NH3/ NH4+ into the structure of acid-washing TNTs so that the photocatalytic oxidation of intercalated NH3/NH4+ is not limited to the shielding effect resulting from the overload of TNTs.
Extra-corporeal membranous oxygenation (ECMO) has been applied in patients with cardiopulmonary failure. One critical drawback of peripheral ECMO is an increase in left ventricular (LV) afterload which could be counterbalanced by the combination of intra-aortic balloon counter-pulsation (IABP) therapy. We hypothesized that an add-on therapy with IABP could improve outcomes in patients receiving ECMO support. We included patients (>18 years old) from 2002 to 2013 requiring ECMO support due to cardiogenic shock in a medical center. A total of 529 patients (227 ECMO alone and 302 combined IABP plus ECMO) were included. The mortality rates at 2 weeks (48.5 vs. 47.7%) after ECMO implantation were not different between the two groups (ECMO vs. combined group). After adjustment for propensity score and potential confounders, the odds ratios of outcomes within 14 days (combined group vs. ECMO) for poor LV systolic function, high preload, multi-organ failure and mortality were not different. The results remained similar for subgroup analysis. Compared with ECMO alone, combined IABP and ECMO treatment did not improve outcomes in patients with circulatory failure.
Primary aldosteronism not only results in hypertension but also stiffer arteries. The time course and factors predicting the reversal of arterial stiffness after treatment are unclear. We prospectively enrolled 102 patients with aldosterone-producing adenoma (APA) from March 2006 to January 2012. We measured the pulse wave velocity (PWV) between brachial-ankle (baPWV) and heart-ankle (haPWV) before, 6 and 12 months after their adrenalectomy. After treatment, the PWV decreased significantly during the first 6 months (both p < 0.001), but no further reduction in the following 6 months. The determinant factors for baseline baPWV were age, duration of hypertension, and baseline systolic blood pressure (SBP) in multivariate linear regression analysis, similar with baseline haPWV (determinants: age, duration of hypertension, baseline SBP and diastolic blood pressure (DBP)). In multivariate linear regression analysis, the decrease in DBP at 6 months (ΔDBP0-6mo) and baseline baPWV were significantly associated with the decrease in baPWV at 6 months (ΔbaPWV0-6mo). The associated factors of the change in haPWV at 6 months (ΔhaPWV0-6mo) were baseline haPWV, ΔDBP0-6mo and change in log-transformed plasma renin activity. Our result suggested that reversal of arterial stiffness in APA patients occurred early after adrenalectomy and determined by baseline vascular condition, hemodynamic factors, and humoral factors.
This study aimed to characterize N-doped TiO2 prepared by thermally treating microwave-assisted titanate nanotubes (TNTs, Na
x
H2−x
Ti3O7) in an Ar/NH3 atmosphere. The effect of intercalated Na(I) within TNTs on the visible light photoactivity and the N-doping mode was investigated as well. By evaluating the performance of photocatalytic oxidation of phenol under the visible region, the photoactivity of N-doped TiO2 prepared from TNTs is 3 times higher than that of N-doped TiO2 prepared from P25 TiO2. Characterizations, including HR-TEM, XRD, XPS, NH3-TPD, UV−vis DRS, and S
BET, indicate that the substitutional N-doping mode, the O−Ti−N linkage, is mainly responsible for narrowing the band gap and eventually enhancing the visible light photoactivity. Furthermore, the doping mechanism is significantly dependent on the presence of intercalated Na(I) within TNTs. The O−Ti−N linkage, owing to the substitutional doping, is apparent for TNTs with a low content of intercalated Na(I), whereas the presence of the higher amount of intercalated Na(I) leads to the formation of the Ti−N−O linkage that is considered as an interstitial doping mode. Also, the presence of intercalated Na(I) during the doping process results in the formation of Na2Ti6O13 instead of an inert TiN crystallinity, which is advantageous to enhancing the photoactivity of N-doped TiO2 due to the effect of interphase electron transfer between Na2Ti6O13 and TiO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.