Avian influenza virus subtype H9N2 (H9N2 AIV) has caused significant losses to the poultry industry due to the high mortality associated with secondary infections attributable to E. coli. This study tries to address the underlying secondary mechanisms after H9N2 AIV infection. Initially, nine day-old specific pathogen-free chickens were assigned to control (uninfected) and H9N2-infected groups, respectively. Using Illumina sequencing, histological examination, and quantitative real-time PCR, it was found that H9N2 AIV caused intestinal microbiota disorder, injury, and inflammatory damage to the intestinal mucosa. Notably, the genera Escherichia, especially E. coli, significantly increased (p < 0.01) at five days post-infection (dpi), while Lactobacillus, Enterococcus, and other probiotic organisms were significantly reduced (p < 0.01). Simultaneously, the mRNA expression of tight junction proteins (ZO-1, claudin 3, and occludin), TFF2, and Muc2 were significantly reduced (p < 0.01), indicating the destruction of the intestinal epithelial cell tight junctions and the damage of mucin layer construction. Moreover, the mRNA expression of proinflammatory cytokines IFN-γ, IL-22, IFN-α, and IL-17A in intestinal epithelial cells were significantly upregulated, resulting in the inflammatory response and intestinal injury. Our findings may provide a theoretical basis for observed gastroenteritis-like symptoms such as diarrhea and secondary E. coli infection following H9N2 AIV infection.
Yeast nucleotides are a fine functional additive in human and animals. The effects of dietary yeast nucleotides supplementation on intestinal development, expression of intestinal barrier-related genes, intestinal microbiota, and infectious bronchitis virus (IBV) antibody titer of specific pathogen-free (SPF) chickens were investigated. A total of 60 1-d-old chickens were divided into 4 groups, each of which included 3 replicates of 5 chickens. Group 1 served as a control that was fed a basal diet. Groups 2 to 4 were fed the basal diet supplemented with 0.1%, 0.3% and 0.5% yeast nucleotides, respectively. All chickens were inoculated intranasally with inactivated IBV vaccine at day 1 and day 10. At day 17, the intestinal development, expression of intestinal barrier-related genes and microbiota were evaluated. There was a significant increased ileal villus height and villus height to crypt depth ratio in group 2 (P < 0.05). Moreover, group 4 exhibited higher expression of zonula occludens-1 (ZO-1) and Occludin gene in ileum (P < 0.05), whereas groups 2 and 3 exhibited higher expression of Mucin 2 (MUC2) and trefoil factor 2 (TFF2) gene (P < 0.05), group 2 showed lower expression of IFN-α gene (P < 0.05). Dietary yeast nucleotides increased intestinal bacterial diversity (P < 0.05), and the abundance of Lactobacillus (P < 0.05). At day 10, 17, 24, 31, 38, and 45, the serum IBV antibody titers were tested. Group 2 exhibited higher IBV antibody titer at day 17 (P < 0.05), furthermore, groups 2 to 4 reached the effective levels 1 wk earlier than control group. In conclusion, dietary yeast nucleotides supplementation can help birds to mount a faster and stronger antibody response to IBV vaccine. In addition, dietary yeast nucleotides supplementation can also promote the intestinal development and barrier-related genes expression, and diversity and richness of intestinal microbiota.
The goal of the study was to test the effects of an antibiotic substitute, plectasin, on the growth performance, immune function, intestinal morphology and structure, intestinal microflora, ileal mucosal layer construction and tight junctions, ileal immune-related cytokines, and blood biochemical indices of yellow-feathered chickens. A total of 1,500 one-day-old yellow-feathered chicks were randomly divided into four dietary treatment groups with five replicates in each group and 75 yellow-feathered chicks in each replication, as follows: basal diet (group A); basal diet supplemented with 10 mg enramycin/kg of diet (group B), basal diet supplemented with 100 mg plectasin/kg of diet (group C), and basal diet supplemented with 200 mg plectasin/kg of diet (group D). It was found that the dietary antimicrobial peptide plectasin could improve the ADG and had better F/G for the overall period of 1–63 days. Dietary plectasin can enhance H9N2 avian influenza virus (AIV) and Newcastle disease virus (NDV) antibody levels of yellow-feathered chickens at 21, and 35 days of age. Dietary plectasin can enhance the intestine structure, inhibit Escherichia coli and proinflammatory cytokines in the ileum, and ameliorate the blood biochemical indices of yellow-feathered chickens at 21 days of age. This study indicates that the antimicrobial peptide plectasin has beneficial effects on the growth performance, intestinal health and immune function of yellow-feathered chickens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.