Multifunctional carbon-based nanodots (C-dots) are synthesized using atmospheric plasma treatments involving reactive gases (oxygen and nitrogen). Surface design was achieved through one-step plasma treatment of C-dots (AC-paints) from polyethylene glycol used as a precursor. These AC-paints show high fluorescence, low cytotoxicity and excellent cellular imaging capability. They exhibit bright fluorescence with a quantum yield twice of traditional C-dots. The cytotoxicity of AC-paints was tested on BEAS2B, THLE2, A549 and hep3B cell lines. The in vivo experiments further demonstrated the biocompatibility of AC-paints using zebrafish as a model, and imaging tests demonstrated that the AC-paints can be used as bio-labels (at a concentration of <5 mg mL). Particularly, the oxygen plasma-treated AC-paints (AC-paints-O) show antibacterial effects due to increased levels of reactive oxygen species (ROS) in AC-paints (at a concentration of >1 mg mL). AC-paints can effectively inhibit the growth of Escherichia coli (E. coli) and Acinetobacter baumannii (A. baumannii). Such remarkable performance of the AC-paints has important applications in the biomedical field and environmental systems.
We report an effect involving hydrogen (H2)-plasma-treated nanoporous TiO2(H-TiO2) photocatalysts that improve photocatalytic performance under solar-light illumination. H-TiO2 photocatalysts were prepared by application of hydrogen plasma of assynthesized TiO2(a-TiO2) without annealing process. Compared with the a-TiO2, the H-TiO2 exhibited high anatase/brookite bicrystallinity and a porous structure. Our study demonstrated that H2 plasma is a simple strategy to fabricate H-TiO2 covering a large surface area that offers many active sites for the extension of the adsorption spectra from ultraviolet (UV) to visible range. Notably, the H-TiO2 showed strong ·OH free-radical generation on the TiO2 surface under both UV- and visible-light irradiation with a large responsive surface area, which enhanced photocatalytic efficiency. Under solar-light irradiation, the optimized H-TiO2 120(H2-plasma treatment time: 120 min) photocatalysts showed unprecedentedly excellent removal capability for phenol (Ph), reactive black 5(RB 5), rhodamine B (Rho B) and methylene blue (MB) — approximately four-times higher than those of the other photocatalysts (a-TiO2 and P25) — resulting in complete purification of the water. Such well-purified water (>90%) can utilize culturing of cervical cancer cells (HeLa), breast cancer cells (MCF-7), and keratinocyte cells (HaCaT) while showing minimal cytotoxicity. Significantly, H-TiO2 photocatalysts can be mass-produced and easily processed at room temperature. We believe this novel method can find important environmental and biomedical applications.
The device architecture of solar cells remains critical in achieving high photoconversion efficiency while affordable and scalable routes are being explored. Here, we demonstrate a scalable, low cost, and less toxic synthesis route for the fabrication of PbS/CdS thin-film solar cells with efficiencies as high as ∼5.59%, which is the highest efficiency obtained so far for the PbS-based solar cells not involving quantum dots. The devices use a stack of two band-aligned junctions that facilitates absorption of a wider range of the solar spectrum and an architectural modification of the electron-accepting electrode assembly consisting of a very thin CdS layer (∼10 nm) supported by vertically aligned ZnO nanorods on a ∼50 nm thick ZnO underlayer. Compared to a planar electrode of a 50 nm thick CdS film, the modified electrode assembly enhanced the efficiency by ∼39% primarily due to a significantly higher photon absorption in the PbS layer, as revealed by a detailed three-dimensional finite difference time-domain optoelectronic modeling of the device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.