Accurate measurement of the tree height and canopy cover density is important for forest biomass and management. Recently, Light Detection and Ranging (LIDAR) and Unmanned Aerial Vehicle (UAV) images have been used to estimate the tree height and canopy cover density for a forest stands. More so, UAV systems with autopilot functions, affordable Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) have created new possibilities, aided by available photogrammetric programs. In this study, we investigated the possibility of data collection methods using an Aerial LIDAR Scanner (ALS) and an UAV together with a fieldworks to evaluate accurate the tree standard metrics in Singyeri, Gyeongjusi, and Gyeongsangbukdo province. The derived metrics via statistical analyses of the ALS and UAV data and validated by field measurements were compared to a published forest type map (scale 1:5000) by the Korea Forest Service; geared towards improving the forest attributes. We collected data and analyzed and compared them with existent the forest type map produced from an aerial photographs and a digital stereo plotter. The ALS data of around 19.5 points·m–2 were collected by an airplane, then processed and classified using the LAStools; while about 362 images of the UAV were processed via Structure from Motion algorithm in the Agisoft Metashape Pro. Thus, we calculated the metrics using the point clouds of both an ALS and an UAV, and then verified their similarity. The fieldwork was manually done on 110 sampled trees. Calculated heights of the UAV were 3.8~5.8 m greater than those for the ALS; and when correlated with the fieldwork, the UAV data overestimated, while the maximum height of the ALS data was more accurate. For the canopy cover, the ALS computed canopy cover was 10%~30% less than that of the UAV. However, the canopy cover above 2 m by an UAV was the best measurement for a forest canopy. Therefore, these results assert that the examined techniques are robust and can significantly complement methods of the conventional data acquisition for the forest type map.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.