TiO2 nanorod (NR) and nanotube (NT) arrays grown on transparent conductive substrates are attractive electrode for solar cells. In this paper, TiO2 NR arrays are hydrothermally grown on FTO substrate, and are in situ converted into NT arrays by hydrothermally etching. The TiO2 NR arrays are reported as single crystalline, but the TiO2 NR arrays are demonstrated to be polycrystalline with a bundle of 2-5 nm single crystalline nanocolumns grown along [001] throughout the whole NR from bottom to top. TiO2 NRs can be converted to NTs by hydrothermal selective etching of the (001) core and remaining the inert sidewall of (110) face. A growth mechanism of the NR and NT arrays is proposed. Quantum dot-sensitized solar cells (QDSCs) are fabricated by coating CdSe QDs on to the TiO2 arrays. After conversion from NRs to NTs, more QDs can be filled in the NTs and the energy conversion efficiency of the QDSCs almost double.
Abstract-This article presents the design and validation of a wearable glove-based multifinger-motion capture device (SmartGlove), specifically focusing on the development of a new optical linear encoder (OLE). The OLE specially designed for this project is compact and lightweight and has low-power consumption. The characterization tests showed that the OLE's digital output has good linearity and is accurate. The first prototype of SmartGlove, which uses 10 OLEs to capture the flexion/extension motion of the 14 finger joints, was constructed based on the multipoint-sensing method. A user study evaluated the SmartGlove using a standard protocol and found high repeatability and reliability in both the gripped and flat-hand positions compared with four other evaluated data gloves using the same protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.