This paper analyses the performance of the anaerobic selector (A/O process) in a full-scale activated sludge process receiving mostly industrial sewage discharge (> 60%) in Singapore. In addition to the sludge settleability, enhanced biological phosphorus removal (EBPR) was studied. The sludge volume index (SVI) reduced from 200 to 80 ml g(-1) and foaming was suppressed significantly, indicating the effectiveness of the anaerobic selector in improving sludge settleability. The phosphorus removal efficiency was 66%, and 7.5 mg HAc-COD was consumed per mg PO4(3-) -P removed. In the anaerobic compartment, 31% of the SCOD and 73% of the acetic acid in the settled sewage were removed with PO4(3-) -P release of 14.1 mg PO4(3-)-P l(-1). The linear correlation between PO4(3-) -P release in the anaerobic compartment and PO4(3-) -P uptake in the aerobic compartment indicates that there is about 0.8 mg PO4(3-) -P release in the anaerobic compartment per mg PO34(3-) -P uptake in the aerobic compartment. The fates of volatile fatty acids (VFAs) and its short chain acids (SCAs) in the process were studied and discussed.
A laboratory-scale system consisting of an upflow anaerobic sludge blanket (UASB) reactor followed by a modified Ludzack-Ettinger (MLE) activated sludge process was adopted to investigate COD and nitrogen removals in municipal sewage treatment in warm climate. The COD, SCOD, acetic acid (HAc), NH4+-N and PO4(3-)-P conversions in the UASB reactor were investigated. A 35% reduction in volatile suspended solid (VSS) was achieved in the UASB process. The net methane (CH4) production was 0.06 l (g COD(removed))(-1). Acids accumulation was not observed. In the MLE activated sludge process, nitrification was almost complete while denitrification was modest. Little excess sludge was produced as the bulk of the COD was removed in the UASB reactor, which reduced the COD mass load to the activated sludge process. The average COD and SCOD of the final effluent of the activated sludge process were 51 and 25 mg l(-1), respectively and the average NH4+-N concentration of the final effluent was 3.1 mg N l(-1). The results illustrated that the coupled process is feasible for COD and nitrogen removals in municipal sewage treatment in warm climate. However, the low pH of the final effluent (<6 on average) remains an issue to be solved.
This paper presents the investigation results of retrofitting an anoxic selector to an anaerobic selector through stepwise reduction of air supply in a full-scale activated sludge process with a focus on enhanced biological phosphorus removal (EBPR). The process experienced gradual shift from a Ludzack-Ettinger (LE) to an anaerobic-anoxic-oxic (A(2)O) process and subsequently, an anaerobic-oxic (A/O) process. The major findings are: (i) the average influent-based PO(4) (3-)-P release in the anaerobic selector compartment was 16.3 mg P l(-1) and that in the secondary clarifier was 1.7 mg P l(-1). 75% of the SCOD and 93% of the acetic acid in the primary effluent were taken up in the anaerobic selector compartment, respectively; (ii) PO(4) (3-)-P uptake contributed by both aerobic and denitrifying phosphorus accumulating organisms (DPAOs) occurred mainly in the first and second aerobic lanes together with simultaneous nitrification and denitrification (SND) while there was not much contribution from the last aerobic lane; (iii) The average PO(4) (3-)-P concentration of the final effluent was 2.4 mg P l(-1) corresponding to a removal efficiency of 85%; (iv) the SVI was satisfactory after retrofitting; and (v) the increase of NH(4) (+)-N in the final effluent from the commencement to the completion of the retrofitting resulted in an approximate 40-50% reduction in oxygen demand and a significant aeration energy saving was achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.