This paper proposes a facial expression recognition system using evolutionary particle swarm optimization (PSO)-based feature optimization. The system first employs modified local binary patterns, which conduct horizontal and vertical neighborhood pixel comparison, to generate a discriminative initial facial representation. Then, a PSO variant embedded with the concept of a micro genetic algorithm (mGA), called mGA-embedded PSO, is proposed to perform feature optimization. It incorporates a nonreplaceable memory, a small-population secondary swarm, a new velocity updating strategy, a subdimension-based in-depth local facial feature search, and a cooperation of local exploitation and global exploration search mechanism to mitigate the premature convergence problem of conventional PSO. Multiple classifiers are used for recognizing seven facial expressions. Based on a comprehensive study using within- and cross-domain images from the extended Cohn Kanade and MMI benchmark databases, respectively, the empirical results indicate that our proposed system outperforms other state-of-the-art PSO variants, conventional PSO, classical GA, and other related facial expression recognition models reported in the literature by a significant margin.
In this paper, synchronization of an inertial neural network with time-varying delays is investigated. Based on the variable transformation method, we transform the second-order differential equations into the first-order differential equations. Then, using suitable Lyapunov-Krasovskii functionals and Jensen's inequality, the synchronization criteria are established in terms of linear matrix inequalities. Moreover, a feedback controller is designed to attain synchronization between the master and slave models, and to ensure that the error model is globally asymptotically stable. Numerical examples and simulations are presented to indicate the effectiveness of the proposed method. Besides that, an image encryption algorithm is proposed based on the piecewise linear chaotic map and the chaotic inertial neural network. The chaotic signals obtained from the inertial neural network are utilized for the encryption process. Statistical analyses are provided to evaluate the effectiveness of the proposed encryption algorithm. The results ascertain that the proposed encryption algorithm is efficient and reliable for secure communication applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.