Animal behavior is increasingly being recorded in systematic imaging studies that generate large data sets. To maximize the usefulness of these data there is a need for improved resources for analyzing and sharing behavior data that will encourage re-analysis and method development by computational scientists 1 . However, unlike genomic or protein structural data, there are no widely used standards for behavior data. It is therefore desirable to make the data available in a relatively raw form so that different investigators can use their own representations and derive their own features. For computational ethology to approach the level of maturity of other areas of bioinformatics, we need to address at least three challenges: storing and accessing video files, defining flexible data formats to facilitate data sharing, and making software to read, write, browse, and analyze the data. We have developed an open resource to begin addressing these challenges using worm tracking as a model.To store video files and the associated feature and metadata, we use a Zenodo.org community (an open-access repository for data) that provides durable storage, citability, and supports contributions from other groups. We have also developed a web interface that enables filtering based on feature histograms that can return, for example, fast and curved worms in addition to more standard searches for particular strains or genotypes ( Fig. 1 and http://movement.openworm.org/). The database consists of 14,874 single-worm tracking experiments representing 386 genotypes (building on 9,203 experiments and 305 genotypes in a previous publication 2 ) and includes data from several larval stages as well as ageing data consisting of over 2,700 videos of animals tracked daily from the L4 stage to death. Full resolution videos are available in HDF5 containers that include gzip-compressed video frames, timestamps, worm outline and midline, feature data, and experiment metadata. HDF5 files are compatible with multiple languages including MATLAB, R, Python, and C. We have also developed an HDF5 video reader that allows video playback with adjustable speed and zoom (important when reviewing high-resolution, multi-worm tracking data), as well as toggling of worm segmentation over the original video to verify segmentation accuracy during playback.Secondly, we have defined an interchange format named Worm tracker Commons Object Notation (WCON), to facilitate data sharing and software reuse among groups working on worm behavior. WCON uses the widely supported JSON format to store tracking data as text that is both human and machine readable. It is compatible with single and multi-worm 3 data, at any resolution: from a single point representing worm position over time 4 , to many points representing the high-resolution skeleton of a moving worm 2 . Importantly, it also supports custom feature additions so that individual labs can store their own specific data sets alongside the universal set of basic worm data. WCON readers are available for Python, MATL...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.