Nowadays many robotic systems are developed with lot of innovation, seeking to get flexibility and efficiency of biological systems. Hexapod Robot is the best example for such robots, it is a six-legged robot whose walking movements try to imitate the movements of the insects, it has two sets of three legs alternatively which is used to walk, this will provide stability, flexibility and mobility to travel on irregular surfaces. With these attributes the hexapod robots can be used to explore irregular surfaces, inhospitable places, or places which are difficult for humans to access. This paper involves the development of hexapod robot with digital image processing implemented on Raspberry Pi, to study in the areas of robotic systems with legged locomotion and robotic vision. This paper is an integration of a robotic system and an embedded system of digital image processing, programmed in high level language using Python. It is equipped with a camera to capture real time video and uses a distance sensor that allow the robot to detect obstacles. The Robot is Self-Stabilizing and can detect corners. The robot has 3 degrees of freedom in each six legs thus making a 18 DOF robotic movement. The use of multiple degrees of freedom at the joints of the legs allows the legged robots to change their movement direction without slippage. Additionally, it is possible to change the height from the ground, introducing a damping and a decoupling between the terrain irregularities and the body of the robot servo motors. Keywords: Hexapod, Raspberry Pi, Computer vision, Object detection, Yolo, Servo Motor, OpevCV.
The predicament in image deblurring, that is, the resurgence of an image against the noise along with the blur is an important issue in task dealing with image processing applications. .Owing to the deblurrng issue, many techniques related to regularization has found a concern in the recent years. In this paper, an efficient regularization method is put forward which utilizes the Lagrangian multiplier for the deblurring process. The major contribution of the proposed scheme is to determine the values of regularization approach towards attaining an better enhanced tradeoff among image resurgence and noise restraint using projection based image deblurring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.