Neurons are highly polarized cells with complex neurite morphology. Spatial organization and local translation of RNAs in dendrites and axons play an important role in many neuronal functions. Here we performed super-resolution spatial profiling of RNAs inside individual neurons at the genome scale using multiplexed error-robust fluorescence in situ hybridization (MERFISH), and mapped the spatial organization of up to ∼4,200 RNA species (genes) across multiple length scales, ranging from sub-micrometer to millimeters. Our data generated a quantitative intra-neuronal atlas of RNAs with distinct transcriptome compositions in somata, dendrites, and axons, and revealed diverse sub-dendritic distribution patterns of RNAs. Moreover, our spatial analysis identified distinct groups of genes exhibiting specific spatial clustering of transcripts at the sub-micrometer scale that were dependent on protein synthesis and differentially dependent on synaptic activity. Overall, these data provide a rich resource for characterizing the subcellular organization of the transcriptome in neurons with high spatial resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.