Investigations of transcriptional responses during developmental transitions typically use time courses with intervals that are not commensurate with the timescales of known biological processes. Moreover, such experiments typically focus on protein-coding transcripts, ignoring the important impact of long noncoding RNAs. We evaluated coding and noncoding expression dynamics at high temporal resolution (6-hourly) in differentiating mouse embryonic stem cells and report the effects of increased temporal resolution on the characterization of the underlying molecular processes. We present a refined resolution of global transcriptional alterations, including regulatory network interactions, coding and noncoding gene expression changes as well as alternative splicing events, many of which cannot be resolved by existing coarse developmental time--courses. We describe novel short lived and cycling patterns of gene expression and temporally dissect ordered gene expression at bidirectional promoters and responses to transcription factors. These findings demonstrate the importance of temporal resolution for understanding gene interactions in mammalian systems.Links to dataData has been deposited into GEO: The Reviewer access link is: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=cnglummejbkltyj@acc=GSE75028
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.