A simple, cost-effective, and environmentally friendly method is needed for synthesizing metal nanoparticles, including gold nanoparticles (AuNPs). In this study, AuNPs were synthesized with Lignosus rhinocerotis sclerotial extract (LRE) and chitosan (CS) as reducing and stabilizing agents, respectively. Different LRE concentrations from cold and hot water extraction (CWE and HWE, respectively) were used to reduce chloroauric acid (HAuCl4) to form AuNPs. Positively charged chitosan stabilized AuNPs (CS-AuNPs) mediated by LRE exhibited a surface plasmon resonance (SPR) band at 533 nm. The CS-AuNPs synthesized using CWE had a smaller particle size (49.5 ± 6.7–82.4 ± 28.0 nm) compared to that of the HWE samples (80.3 ± 23.4–125.3 ± 41.5 nm), depending on LRE concentration. FTIR results suggested protein and polysaccharides in LRE were the sources of reducing power, reducing gold ions to AuNPs. CS-AuNPs were mostly spherical with higher LRE concentrations, whereas some triangular, pentagonal, irregular, and rod shaped AuNPs were observed at lower LRE concentrations. CS-AuNPs mediated by LRE displayed effective antibacterial activity against gram-negative (Pseudomonas aeruginosa and Escherichia coli) and gram-positive bacteria (Staphylococcus aureus and Bacillus sp.). Thus, the biosynthesized AuNPs using LRE and chitosan provide opportunities for developing stable and eco-friendly nanoparticles with effective antibacterial properties.
Biosynthesized or biogenic metallic nanoparticles, particularly silver and gold nanoparticles (AgNPs and AuNPs, respectively), have been increasingly used because of their advantages, including high stability and loading capacity; moreover, these nanoparticles are synthesized using a green and cost-effective method. Previous studies have investigated reducing and/or stabilizing agents from various biological sources, including plants, microorganisms, and marine-derived products, using either a one-pot or a multistep process at different conditions. In addition, extensive studies have been performed to determine the biological or pharmacological effects of these nanoparticles, such as antimicrobial, antitumor, anti-inflammatory, and antioxidant effects. In the recent years, chitosan, a natural cationic polysaccharide, has been increasingly investigated as a reducing and/or stabilizing agent in the synthesis of biogenic metallic nanoparticles with potential applications in nanomedicine. Here, we have reviewed the mechanism of biosynthesis and potential applications of AgNPs and AuNPs and their chitosan-mediated nanocomposites in nanomedicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.