Elastocaloric cooling, which exploits the latent heat released and absorbed as stress-induced phase transformations are reversibly cycled in shape memory alloys, has recently emerged as a frontrunner in non-vapor-compression cooling technologies. The intrinsically high thermodynamic efficiency of elastocaloric materials is limited only by work hysteresis. Here, we report on creating high-performance low-hysteresis elastocaloric cooling materials via additive manufacturing of Titanium-Nickel (Ti-Ni) alloys. Contrary to established knowledge of the physical metallurgy of Ti-Ni alloys, intermetallic phases are found to be beneficial to elastocaloric performances when they are combined with the binary Ti-Ni compound in nanocomposite configurations. The resulting microstructure gives rise to quasi-linear stressstrain behaviors with extremely small hysteresis, leading to enhancement in the materials efficiency by a factor of five. Furthermore, despite being composed of more than 50% intermetallic phases, the reversible, repeatable elastocaloric performance of this material is shown to be stable over one million cycles. This result opens the door for direct implementation of additive manufacturing to elastocaloric cooling systems where versatile design strategy enables both topology optimization of heat exchangers as well as unique microstructural control of metallic refrigerants.One Sentence Summary: 3D printing produces highly efficient solid-state cooling nanocomposites with long fatigue life.
The paper reviews and discusses various techniques used in the literature for modeling complex behaviors observed in shape memory alloys (SMAs) that go beyond the core pseudoelastic and shape memory effects. These behaviors, which will be collectively referred to herein as 'secondary effects', include mismatch between austenite and martensite moduli, martensite reorientation under nonproportional multiaxial loading, slip and transformation-induced plasticity and their influence on martensite transformation, strong thermomechanical coupling and the influence of loading rate, tensile-compressive asymmetry, and the formation of internal loops due to incomplete phase transformation. In addition, because of their importance for practical design considerations, the paper discusses functional and structural fatigue, and fracture mechanics of SMAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.