We present the results from four stellar occultations by (486958) Arrokoth, the flyby target of the New Horizons extended mission. Three of the four efforts led to positive detections of the body, and all constrained the presence of rings and other debris, finding none. Twenty-five mobile stations were deployed for 2017 June 3 and augmented by fixed telescopes. There were no positive detections from this effort. The event on 2017 July 10 was observed by SOFIA with one very short chord. Twenty-four deployed stations on 2017 July 17 resulted in five chords that clearly showed a complicated shape consistent with a contact binary with rough dimensions of 20 by 30 km for the overall outline. A visible albedo of 10% was derived from these data. Twenty-two systems were deployed for the fourth event on 2018 Aug 4 and resulted in two chords. The combination of the occultation data and the flyby results provides a significant refinement of the rotation period, now estimated to be 15.9380 ± 0.0005 hours. The occultation data also provided high-precision astrometric constraints on the position of the object that were crucial for supporting the navigation for the New Horizons flyby. This work demonstrates an effective method for obtaining detailed size and shape information and probing for rings and dust on distant Kuiper Belt objects as well as being an important source of positional data that can aid in spacecraft navigation that is particularly useful for small and distant bodies.
Rotational excitation of the interstellar HC 2 NC and HNC 3 molecules, two isomers of HC 3 N, induced by collisions with H 2 is investigated at low collision energy using a quantum time-independent approach. The scattering calculations are based on new high-level ab initio 4-dimensional (4D) potential energy surfaces (PESs) computed at the explicitly-correlated coupled-cluster with single, double, and perturbative triple excitations [CCSD(T)-F12b] level of theory. The method of interpolating moving least squares (IMLS) was used to construct 4D analytical PESs. Rotationally inelastic cross sections among the low-lying rotational levels of HC 2 NC and HNC 3 were obtained using a pure quantum close-coupling approach for total energies up to ∼ 100 cm −1 . The corresponding thermal rate coefficients were computed for temperatures ranging from 1 to 20 K. Propensity rules in favor of even ∆j 1 transitions were found for both HC 2 NC and HNC 3 in collisions with para-H 2 (j = 0), j 1 being the rotational level of HC 2 NC and HNC 3 molecules. The new rate coefficients were compared with previously published HC 3 N-para-H 2 (j = 0) rate coefficients. As expected, differences were found, especially for the rate coefficients corresponding to ∆j 1 = 1 transitions. Such a comparison confirms the importance of having specific collisional data for the different isomers of a molecule. The new rate coefficients will be crucial to improve the estimation of the HC 3 N:HC 2 NC:HNC 3 abundance ratio in the interstellar medium.
Cyanoacetylene molecules are widespread in the interstellar medium (ISM) and several of its isomers have been detected in cold molecular clouds and circumstellar gas. Accurate estimates of the abundance ratio of cyanoacetylene isomers may provide deep insight into their environment. Such knowledge requires rigorous modelling of the emission spectra based on non-local thermodynamic equilibrium (LTE) radiative transfer calculations. To this end, we computed excitation cross-sections of HC2NC and HNC3 induced by collision with para- and ortho-H2, using a quantum mechanical close-coupling method. Then, by thermally averaging these data, we derived rate coefficients for the first 31 low-lying rotational levels of each isomer for temperatures up to 80 K. For the para-H2 collider, the propensity rules are in favour of rotational transitions involving Δj1 = 2 for both isomers, while for the ortho-H2 collider, Δj1 = 2 and Δj1 = 1 rotational transitions are favoured for HC2NC and HNC3, respectively. A comparison of rate coefficients for the HC3N isomers shows differences up to an order of magnitude, especially at low temperatures. Finally, we performed non-LTE radiative transfer calculations to assess the impact of such variations in the analysis of observations. Our simulation suggests that the lack of collisional data specific to each isomer could lead to errors up to a factor of 2–3 in the excitation temperatures. We expect that these data could help in better understanding the cyanoacetylene chemistry and constraining the nitrogen chemistry in the ISM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.