Photoacoustic (PA) imaging can enable high resolution visualization of biological processes at the molecular level through the application of targeted contrast agents or activatable probes.
Shortwave infrared (SWIR) dyes are characterized by their ability to absorb light from 900 to 1400 nm, which is ideal for deep tissue imaging owing to minimized light scattering and interference from endogenous pigments. An approach to access such molecules is to tune the photophysical properties of known near‐infrared dyes. Herein, we report the development of a series of easily accessible (three steps) SWIR xanthene dyes based on a dibenzazepine donor conjugated to thiophene (SCR‐1), thienothiophene (SCR‐2), or bithiophene (SCR‐3). We leverage the fact that SCR‐1 undergoes a bathochromic shift when aggregated for in vivo studies by developing a ratiometric nanoparticle for NO (rNP‐NO), which we employed to successfully visualize pathological levels of nitric oxide in a drug‐induced liver injury model via deep tissue SWIR photoacoustic (PA) imaging. Our work demonstrates how easily this dye series can be utilized as a component in nanosensor designs for imaging studies.
Background: In 1948, the synthesis and Plasmodium lophurae activity of 2-hydroxy-1,4-naphthoquinones containing 3-alkyldiarylether side chains was reported. Method/results: The synthesis of five related compounds, designed to be more metabolically stable, was pursued. The compounds were synthesized using a radical alkylation reaction with naphthoquinones. One compound had a lower IC50 value against various strains of Plasmodium falciparum and assay data indicate that it binds to the Qo site of cytochrome bc1. With a low yield for the radical alkylation of the most active compound, a reductive alkylation method with used to improve reaction yields. Conclusion: Further synthetic knowledge was obtained, and the assay data indicate that there are sensitivity differences between avian and human malarial parasites for these molecules.
Shortwave infrared (SWIR) dyes are characterized by their ability to absorb light from 900 to 1400 nm, which is ideal for deep tissue imaging owing to minimized light scattering and interference from endogenous pigments. An approach to access such molecules is to tune the photophysical properties of known nearinfrared dyes. Herein, we report the development of a series of easily accessible (three steps) SWIR xanthene dyes based on a dibenzazepine donor conjugated to thiophene (SCR-1), thienothiophene (SCR-2), or bithiophene (SCR-3). We leverage the fact that SCR-1 undergoes a bathochromic shift when aggregated for in vivo studies by developing a ratiometric nanoparticle for NO (rNP-NO), which we employed to successfully visualize pathological levels of nitric oxide in a drug-induced liver injury model via deep tissue SWIR photoacoustic (PA) imaging. Our work demonstrates how easily this dye series can be utilized as a component in nanosensor designs for imaging studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.