Determining intrabolus pressure (IBP) at the upper esophageal sphincter (UES) and in the esophagus has given compelling evidence that IBP can be a predictor for swallowing dysfunction. Studies have looked most superiorly at the low hypopharynx region but there has been no inquiry into what IBP measures throughout the entire pharynx can tell us. We present a study to describe the pressures within and surrounding the moving bolus throughout the pharynx and into the UES. Simultaneous HRM and videofluoroscopy were performed in 10 healthy subjects swallowing ten 10 mL thin-liquid barium boluses. Three events surrounding bolus movement were tracked via videofluoroscopy, two additional events were found using manometric measures. As the bolus passes through the pharynx, low pressure is created at and below the head of the bolus. A modest pressure increase is seen as the bolus passes through the pharynx and finally, high pressure is observed at the bolus tail, followed by an even larger pressure generation of a clearance event. HRM allows for greater resolution in data collection in the pharynx and in this study, aided in identifying semi unique characteristics around the hypopharynx and the UES which are consistent with the complex anatomy of the regions and the transition of the UES from active closure to relaxed opening. In the future, additional studies designed to look at aged and diseased populations may lead to better understanding of disease etiology, and treatment options.
Objectives/HypothesisHigh‐resolution manometry (HRM) is useful in identifying disordered swallowing patterns and quantifying pharyngeal and upper esophageal sphincter (UES) physiology. HRM is limited by unidirectional sensors and circumferential averaging of pressures, resulting in an imperfect understanding of pressure from asymmetrical pharyngeal anatomy. This study aims to evaluate UES pressures simultaneously from different axial directions.Study DesignCase series.MethodsThree‐dimensional HRM was performed on eight healthy subjects to evaluate circumferential UES pressure patterns at rest, during the Valsalva maneuver, and during water swallowing.ResultsMultivariate analysis of the variance revealed a significant main effect of circumferential direction on pressure while at rest (P < .001); pressure was greater in the anterior and posterior portions of the UES versus lateral portions. A significant main effect of direction on pressure was not found during the Valsalva maneuver. During swallowing of a 5‐mL water bolus, circumferential direction had a significant main effect on pressure immediately before UES pressure dropped (P = .001), while the UES was open (P = .01) and at UES closure (P < .001). There was also a significant main effect of sensor level along the vertical axis on pressure immediately before UES pressure dropped (P = .032) and at UES closure (P < .001). Anterior and posterior pressures were again greater than lateral pressures at all swallowing events.ConclusionsThese results confirm that UES pressures vary significantly based on their circumferential origin, with the majority of the total pressure generated in anterior and posterior regions. Improved understanding of UES pressure in a three‐dimensional space can lead to more sophisticated treatments for pharyngeal and UES dysfunction.Level of Evidence4. Laryngoscope, 126:2539–2545, 2016
Objective To determine if pattern recognition techniques applied to high-resolution manometry (HRM) spatiotemporal plots of the pharyngeal swallow can identify features of disordered swallowing reported on the Modified Barium Swallow Impairment Profile (MBSImP). Study Design Case series evaluating new method of data analysis. Setting University hospital. Subjects and Methods Simultaneous HRM and videofluoroscopy was performed on 30 subjects (335 swallows) with dysphagia. Videofluoroscopic studies were scored according to the MBSImP guidelines while HRM plots were analyzed using a novel program. Pattern recognition using a multilayer perceptron artificial neural network (ANN) was performed to determine if seven pharyngeal components of the MBSImP as well as penetration/aspiration status could be identified from the HRM plot alone. Receiver operating characteristic (ROC) analysis was also performed. Results MBSImP parameters were identified correctly as normal or disordered at an average rate of approximately 91% (area under the ROC curve ranged from 0.902 to 0.981). Classifications incorporating two MBSImP parameters resulted in classification accuracies over 93% (area under the ROC curve ranged from 0.963 to 0.989). Conclusion Pattern recognition coupled with multiparameter quantitative analysis of HRM spatiotemporal plots can be used to identify swallowing abnormalities which are currently assessed using videofluoroscopy. The ability to provide quantitative, functional data at the bedside while avoiding radiation exposure make HRM an appealing tool to supplement and, at times, replace traditional videofluoroscopic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.