Understanding the diversification of phenotypes through time--"descent with modification"--has been the focus of evolutionary biology for 150 years. If, contrary to expectations, similarity evolves in unrelated taxa, researchers are guided to uncover the genetic and developmental mechanisms responsible. Similar phenotypes may be retained from common ancestry (homology), but a phylogenetic context may instead reveal that they are independently derived, due to convergence or parallel evolution, or less likely, that they experienced reversal. Such examples of homoplasy present opportunities to discover the foundations of morphological traits. A common underlying mechanism may exist, and components may have been redeployed in a way that produces the "same" phenotype. New, robust phylogenetic hypotheses and molecular, genomic, and developmental techniques enable integrated exploration of the mechanisms by which similarity arises.
Barcodes are short segments of DNA that can be used to uniquely identify an unknown specimen to species, particularly when diagnostic morphological features are absent. These sequences could offer a new forensic tool in plant and animal conservation—especially for endangered species such as members of the Cycadales. Ideally, barcodes could be used to positively identify illegally obtained material even in cases where diagnostic features have been purposefully removed or to release confiscated organisms into the proper breeding population. In order to be useful, a DNA barcode sequence must not only easily PCR amplify with universal or near-universal reaction conditions and primers, but also contain enough variation to generate unique identifiers at either the species or population levels. Chloroplast regions suggested by the Plant Working Group of the Consortium for the Barcode of Life (CBoL), and two alternatives, the chloroplast psbA-trnH intergenic spacer and the nuclear ribosomal internal transcribed spacer (nrITS), were tested for their utility in generating unique identifiers for members of the Cycadales. Ease of amplification and sequence generation with universal primers and reaction conditions was determined for each of the seven proposed markers. While none of the proposed markers provided unique identifiers for all species tested, nrITS showed the most promise in terms of variability, although sequencing difficulties remain a drawback. We suggest a workflow for DNA barcoding, including database generation and management, which will ultimately be necessary if we are to succeed in establishing a universal DNA barcode for plants.
Imagine if we could compute across phenotype data as easily as genomic data; this article calls for efforts to realize this vision and discusses the potential benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.