Neural stem cell-driven adult neurogenesis contributes to the integrity of the hippocampus. Excessive alcohol consumption in alcoholism results in hippocampal degeneration that may recover with abstinence. Reactive, increased adult neurogenesis during abstinence following alcohol dependence may contribute to recovery, but the mechanism driving reactive neurogenesis is not known. Therefore, adult, male rats were exposed to alcohol for four days and various markers were used to examine cell cycle dynamics, the percentage and number of neural progenitor cell subtypes, and the percentage of quiescent versus activated progenitors. Using a screen for cell cycle perturbation, we showed that the cell cycle is not likely altered at 7 days in abstinence. As the vast majority of Bromodeoxyuridine-positive (+) cells were co-labeled with progenitor cell marker, Sox2, we then developed a quadruple fluorescent labeling scheme to examine Type-1, -2a, -2b and -3 progenitor cells simultaneously. Prior alcohol dependence indiscriminately increased all subtypes at 7 days, the peak of the reactive proliferation. An evaluation of the time course of reactive cell proliferation revealed that cells begin proliferating at 5 days post alcohol, where only actively dividing Type 2 progenitors were increased by alcohol. Furthermore, prior alcohol increased the percentage of actively dividing Sox2+ progenitors, which supported that reactive neurogenesis is likely due to the activation of progenitors out of quiescence. These observations were associated with granule cell number returning to normal at 28 days. Therefore, activating stem and progenitor cells out of quiescence may be the mechanism underlying hippocampal recovery in abstinence following alcohol dependence.
Background: The excessive alcohol drinking that occurs in alcohol use disorder (AUD) causes neurodegeneration in regions such as the hippocampus, though recovery may occur after a period of abstinence. Mechanisms of recovery are not clear, though reactive neurogenesis has been observed in the hippocampal dentate gyrus following alcohol dependence and correlates to recovery of granule cell number. Objective: We investigated the role of neurons born during reactive neurogenesis in the recovery of hippocampal learning behavior after 4-day binge alcohol exposure, a model of an AUD. We hypothesized that reducing reactive neurogenesis would impair functional recovery. Methods: Adult male rats were subjected to 4-day binge alcohol exposure and two approaches were tested to blunt reactive adult neurogenesis, acute doses of alcohol or the chemotherapy drug, temozolomide (TMZ). Results: Acute 5 g/kg doses of EtOH gavaged T6 and T7 days post binge did not inhibit significantly the number of Bromodeoxyuridine-positive (BrdU+) proliferating cells in EtOH animals receiving 5 g/kg EtOH versus controls. A single cycle of TMZ inhibited reactive proliferation (BrdU+ cells) and neurogenesis (NeuroD+ cells) to that of controls. However, despite this blunting of reactive neurogenesis to basal levels, EtOH-TMZ rats were not impaired in their recovery of acquisition of the Morris water maze (MWM), learning similarly to all other groups 35 days after 4-day binge exposure. Conclusions: These studies show that TMZ is effective in decreasing reactive proliferation/neurogenesis following 4-day binge EtOH exposure, and baseline levels of adult neurogenesis are sufficient to allow recovery of hippocampal function.
Abstinence after alcohol dependence leads to structural and functional recovery in many regions of the brain, especially the hippocampus. Significant increases in neural stem cell (NSC) proliferation and subsequent “reactive neurogenesis” coincides with structural recovery in hippocampal dentate gyrus (DG). However, whether these reactively born neurons are integrated appropriately into neural circuits remains unknown. Therefore, adult male rats were exposed to a binge model of alcohol dependence. On day 7 of abstinence, the peak of reactive NSC proliferation, rats were injected with bromodeoxyuridine (BrdU) to label dividing cells. After six weeks, rats underwent Morris Water Maze (MWM) training then were sacrificed ninety minutes after the final training session. Using fluorescent immunohistochemistry for c-Fos (neuronal activation), BrdU, and Neuronal Nuclei (NeuN), we investigated whether neurons born during reactive neurogenesis were incorporated into a newly learned MWM neuronal ensemble. Prior alcohol exposure increased the number of BrdU+ cells and newborn neurons (BrdU+/NeuN+ cells) in the DG versus controls. However, prior ethanol exposure had no significant impact on MWM-induced c-Fos expression. Despite increased BrdU+ neurons, no difference in the number of activated newborn neurons (BrdU+/c-Fos+/NeuN+) was observed. These data suggest that neurons born during alcohol-induced reactive neurogenesis are functionally integrated into hippocampal circuitry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.