Hemoplasmas are potentially zoonotic mycoplasmal pathogens, which are not consistently cleared by antibiotic therapy. Mycoplasma haemofelis is the most pathogenic feline hemoplasma species. The aim of this study was to determine how cats previously infected with M. haemofelis that had recovered reacted when rechallenged with M. haemofelis and to characterize the immune response following de novo M. haemofelis infection and rechallenge. Five specific-pathogen-free (SPF)-derived naive cats (group A) and five cats that had recovered from M. haemofelis infection (group B) were inoculated subcutaneously with M. haemofelis. Blood M. haemofelis loads were measured by quantitative PCR (qPCR), antibody response to heat shock protein 70 (DnaK) by enzyme-linked immunosorbent assay (ELISA), blood lymphocyte cell subtypes by flow cytometry, and cytokine mRNA levels by quantitative reverse transcriptase PCR. Group A cats all became infected with high bacterial loads and seroconverted, while group B cats were protected from reinfection, thus providing the unique opportunity to study the immunological parameters associated with this protective immune response against M. haemofelis. First, a strong humoral response to DnaK was only observed in group A, demonstrating that an antibody response to DnaK is not important for protective immunity. Second, proinflammatory cytokine interleukin-6 (IL-6) mRNA levels appeared to increase rapidly postinoculation in group B, indicating a possible role in protective immunity. Third, an increase in IL-12p35 and -p40 mRNA and decrease in the Th2/Th1 ratio observed in group A suggest that a Th1-type response is important in primary infection. This is the first study to demonstrate protective immunity against M. haemofelis reinfection, and it provides important information for potential future hemoplasma vaccine design.
Mycoplasma haemofelis (Mhf), ‘Candidatus Mycoplasma haemominutum’ (CMhm) and ‘Candidatus Mycoplasma turicensis’ (CMt) are agents of feline haemoplasmosis and can induce anaemia in cats. This study aimed to determine the prevalence and phylogeny of haemoplasma species in cats from Brazil's capital and surrounding areas, and whether correlation with haematological abnormalities existed. Feline haemoplasmas were found in 13.8% of 432 cats. CMhm was the most prevalent species (in 13.8% of cats), followed by Mhf (11.1%) and CMt (4.4%). Over 80% of haemoplasma-infected cats harboured two or more feline haemoplasma species: 7.1% of cats were co-infected with Mhf/CMhm, 0.4% with CMhm/CMt and 3.9% with Mhf/CMhm/CMt. Male gender was significantly associated with haemoplasma infections. No association was found between qPCR haemoplasma status and haematological variables, however CMhm relative copy numbers were correlated with red blood cell (RBC) numbers and packed cell volume (PCV). Haemoplasma 16S rRNA gene sequences (> 1 Kb) were derived from co-infected cats using novel haemoplasma species-specific primers. This allowed 16S rRNA gene sequences to be obtained despite the high level of co-infection, which precluded the use of universal 16S rRNA gene primers. Within each species, the Mhf, CMhm and CMt sequences showed > 99.8%, > 98.5% and > 98.8% identity, respectively. The Mhf, CMhm and CMt sequences showed > 99.2%, > 98.4% and > 97.8% identity, respectively, with GenBank sequences. Phylogenetic analysis showed all Mhf sequences to reside in a single clade, whereas the CMhm and CMt sequences each grouped into three distinct subclades. These phylogeny findings suggest the existence of different CMhm and CMt strains.
Mycoplasma haemocanis (Mhc) and 'Candidatus Mycoplasma haematoparvum' (CMhp) are canine haemoplasma species that can induce anaemia in immunocompromised and/or splenectomised dogs. This study aimed to determine the prevalence and phylogeny of canine haemoplasma species in dogs from Nigeria and describe any risk factors for infection. Canine haemoplasma species-specific and generic haemoplasma qPCR assays were used. The species-specific qPCR assays found Mhc infection in 18 of 245 dogs (7.3%), and CMhp infection in only one dog (0.4%). The generic haemoplasma qPCR assays were positive in 44 of 245 (17.9%) dogs. Twenty-five dogs had discordant qPCR results in that they were generic haemoplasma qPCR positive but species-specific qPCR negative. Further evaluation of these dogs by 16S rDNA sequencing gave limited results but 5 were confirmed to be infected with non-haemoplasma species: 2 Anaplasma phagocytophilum, 1 Anaplasma ovis, 1 Serratia marcescens and 1 Aerococcus spp. The 16S rRNA gene sequences from Mhc species showed>99.8% identity with each other and>99.6% identity with GenBank sequences, and resided in a single clade with other global Mhc and Mycoplasma haemofelis sequences, indicating low 16S rRNA genetic variability amongst this canine haemoplasma species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.