Mitral/tufted cells (M/TCs), the principal output neuron classes form complex circuits with bulbar neurons and long-range centrifugal circuits with higher processing areas such as the horizontal limb of the diagonal band of Broca (HDB). The precise excitability of output neurons is sculpted by local inhibitory circuits. Here light-gated cation channel channelrhodopsin-2 (ChR2) was expressed in HDB GABAergic neurons to investigate short-term plasticity of evoked postsynaptic currents/potentials of HDB input to all classes of M/TCs and effects on firing in acute slice preparation. Activation of the HDB directly inhibited all classes of output neurons exhibiting frequency dependent short-term depression of evoked inhibitory postsynaptic current/ potential, resulting in decreased inhibition of responses to olfactory nerve input as a function of input frequency. In contrast, activation of an indirect circuit of HDB→interneurons→M/TCs induced frequency-dependent disinhibition, resulting in short-term facilitation of evoked excitatory postsynaptic current (eEPSC) eliciting a burst or cluster of spiking in M/TCs. The facilitatory effects of elevated HDB input frequency was strongest on deeper output neurons (deep tufted and mitral cells) and negligible on peripheral output neurons (external and superficial tufted cells). Taken together, GABAergic HDB activation generates frequency dependent regulation that differentially affects the excitability and responses across the five classes of M/TCs. This regulation may help maintain the precise balance between inhibition and excitation of neuronal circuits across the populations of output neurons in the face of changes in an animal sniffing rate, putatively to enhance and sharpen the tuning specificity of individual or classes of M/TCs to odors.
Circuit operations of the olfactory bulb are modulated by higher order projections from multiple regions, many of which are themselves targets of bulbar output. Multiple glutamatergic regions project to the olfactory bulb, including the anterior olfactory nucleus (AON), prefrontal cortex (PFC), piriform cortex (PC), entorhinal cortex (EC), and tenia tecta (TT). In contrast, only one region provides GABAergic projections to the bulb. These GABA neurons are located in the horizontal limb of the diagonal band of Broca extending posteriorly through the magnocellular preoptic nucleus to the nucleus of the lateral olfactory bulb. However, it was unclear whether bulbar projecting GABAergic neurons collaterallize projecting to other brain regions. To address this, we mapped collateral projections from bulbar projecting GABAergic neurons using intersectional strategies of viral and traditional tract tracers. This approach revealed bulbar projecting GABAergic neurons show remarkable specificity targeting other primary olfactory cortical regions exhibiting abundant collateral projections into the accessory olfactory bulb, AON, PFC, PC, and TT. The only "nonolfactory" region receiving collateral projections was sparse connectivity to the medial prefrontal orbital cortex. This suggests that basal forebrain inhibitory feedback also modulates glutamatergic feedback areas that are themselves prominent bulbar projection regions. Thus, inhibitory feedback may be simultaneously modulating both synaptic processing of olfactory information in the bulb and associational processing of olfactory information from primary olfactory cortex. We hypothesize that these olfactory GABAergic feedback neurons are a regulator of the entire olfactory system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.