Dust provides ecosystem-sustaining nutrients to landscapes underlain by intensively weathered soils. Here we show that dust may also be crucial in montane forest ecosystems, dominating nutrient budgets despite continuous replacement of depleted soils with fresh bedrock via erosion. Strontium and neodymium isotopes in modern dust show that Asian sources contribute 18–45% of dust deposition across our Sierra Nevada, California study sites. The remaining dust originates regionally from the nearby Central Valley. Measured dust fluxes are greater than or equal to modern erosional outputs from hillslopes to channels, and account for 10–20% of estimated millennial-average inputs of bedrock P. Our results demonstrate that exogenic dust can drive the evolution of nutrient budgets in montane ecosystems, with implications for predicting forest response to changes in climate and land use.
Shifts in microbial communities driven by anthropogenic nitrogen (N) addition have broad-scale ecological consequences. However, responses of microbial groups to exogenous N supply vary considerably across studies, hindering efforts to predict community changes. We used meta-analytical techniques to explore how amoA gene abundances of ammonia-oxidizing archaea (AOA) and bacteria (AOB) respond to N addition, and found that N addition increased AOA and AOB abundances by an average of 27% and 326%, respectively. Responses of AOB varied by study type, ecosystem, fertilizer type, and soil pH, and were strongest in unmanaged wildland soils and soils fertilized with inorganic N sources. Increases in nitrification potential with N addition significantly correlated with only AOB. Our analyses suggest that elevated N supply enhances soil nitrification potential by increasing AOB populations, and that this effect may be most pronounced in unmanaged wildland soils.
Summary1. Analogous to the spread of non-native species, shifts in native species' ranges resulting from climate and land use change are also creating new combinations of species in many ecosystems. These native range shifts may be facilitated by similar mechanisms that provide advantages for non-native species and may also have comparable impacts on the ecosystems they invade. 2. Soil biota, in particular bacteria and fungi, are important regulators of plant community composition and below-ground ecosystem function. Compared to non-native plant invasions, there have been relatively few studies examining how soil biota influence -or are influenced by -native species range shifts. 3. Here, we examined how a native range-expanding sagebrush species (Artemisia rothrockii) affects below-ground abiotic conditions and microbial community structure and function using next-generation sequencing coupled with other biotic and abiotic soil analyses. We utilized a range-expansion gradient, together with a shrub removal experiment and structural equation models, to determine the direct and indirect drivers of these interconnected processes. 4. Sagebrush colonization increased bacterial and archaeal richness and diversity and altered community composition across the expansion gradient. Soil organic C and N and soil moisture increased with sagebrush presence; however, results varied across the expansion gradient. We found no relationship between sagebrush and soil pH; however, pH strongly influenced microbial richness and diversity. Microbial (substrate-induced) respiration was influenced by soil organic N, as well as microbial diversity and functional group relative abundances, highlighting direct and indirect effects of sagebrush on microbial community structure and function. Microbial community composition of soils after 4 years of sagebrush removal was more similar to communities in shrub interspaces than underneath shrubs, suggesting microbial community resilience. 5. Synthesis. Our results suggest that native range expansions can have important impacts on soil biological communities, soil chemistry and hydrology which can further impact below-ground ecosystem processes such as nutrient cycling and litter decomposition. The combination of highthroughput sequencing and structural equation modelling used here offers an exciting yet underutilized approach to understanding how both native and non-native species' range expansions may affect the structure and function of soil ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.