Biofouling is a complex, dynamic problem that globally impacts both the economy and environment. Interdisciplinary research in marine biology, polymer science, and engineering has led to the implementation of bio-inspired strategies for the development of the next generation of antifouling marine coatings. Natural fouling defense mechanisms have been mimicked through chemical, physical, and/or stimuli-responsive strategies. This review outlines the detrimental effects associated with biofouling, describes the theoretical basis for antifouling coating design, and highlights prominent advances in bio-inspired antifouling technologies.
Advances in hydrogel design have revolutionized the way biomaterials are applied to address biomedical needs. Hydrogels were introduced in medicine over 50 years ago and have evolved from static, bioinert materials to dynamic, bioactive microenvironments, which can be used to direct specific biological responses such as cellular ingrowth in wound healing or on-demand delivery of therapeutics. Two general classes of mechanisms, those defined by the user and those dictated by the endogenous cells and tissues, can control dynamic hydrogel microenvironments. These highly tunable materials have provided bioengineers and biological scientists with new ways to not only treat patients in the clinic but to study the fundamental cellular responses to engineered microenvironments as well. Here, we provide a brief history of hydrogels in medicine and follow with a discussion of the synthesis and implementation of dynamic hydrogel microenvironments for healthcare-related applications.
We have developed a model for the prediction of cell attachment to engineered microtopographies based on two previous models: the attachment point theory and the engineered roughness index (ERI) model. The new surface energetic attachment (SEA) model is based on both the properties of the cell-material interface and the size and configuration of the topography relative to the organism. We have used Monte Carlo simulation to examine the SEA model's ability to predict relative attachment of the green alga Ulva linza to different locations within a unit cell. We have also compared the predicted relative attachment for Ulva linza, the diatom Navicula incerta, the marine bacterium Cobetia marina, and the barnacle cyprid Balanus amphitrite to a wide variety of microtopographies. We demonstrate good correlation between the experimental results and the model results for all tested experimental data and thus show the SEA model may be used as a powerful indicator of the efficacy for antifouling topographies.
Substratum topography can play a significant role in regulating cellular function and fate. To study cellular responses to biophysical cues, researchers have developed dynamic methods for controlling cell morphology; however, many of these platforms are limited to one transition between two predefined substratum topographies. To afford the user additional control over the presentation of microtopographic cues to cell populations, a photolabile, PEG-based hydrogel system is presented in which precisely engineered topographic cues can be formed in situ by controlled erosion. Here, the ability to produce precisely engineered static microtopographies in the hydrogel surface is first established. Human mesenchymal stem cell (hMSC) response to topographies with features of subcellular dimensions (∼5 to 40 μm) and with various aspect ratios increasing from 1:1 to infinity (e.g., channels) are quantified, and the dynamic nature of the culture system is demonstrated by sequentially presenting a series of topographies through in situ modifications and quantifying reversible changes in cell morphology in response to substratum topographies altered in real time.
Biophysical cues are widely recognized to influence cell phenotype. While this evidence was established using static substrates, there is growing interest in creating stimulus-responsive biomaterials that better recapitulate the dynamic extracellular matrix. Here, a clickable, photodegradable hydrogel substrate that allows the user to precisely control substrate elasticity and topography in situ is presented. The hydrogels are synthesized by reacting an 8-arm poly(ethylene glycol) alkyne with an azide-functionalized photodegradable crosslinker. The utility of this platform by exploiting its photoresponsive properties to modulate the phenotype of porcine aortic valvular interstitial cells (VICs) is demonstrated. First, VIC phenotype is monitored, in response to initial substratum modulus and static topographic cues. Higher modulus (E ≈ 15 kPa) substrates induce higher levels of activation (≈70% myofibroblasts) versus soft (E ≈ 3 kPa) substrates (≈20% myofibroblasts). Microtopographies that induce VIC alignment and elongation on low modulus substrates also stimulate activation. Finally, VIC phenotype is monitored in response to sequential in situ manipulations. The results illustrate that VIC activation on stiff surfaces (≈70% myofibroblasts) can be partially reversed by reducing surface modulus (≈30% myofibroblats) and subsequently re-activated by anisotropic topographies (≈60% myofibroblasts). Such dynamic substrates afford unique opportunities to decipher the complex role of matrix cues on the plasticity of VIC activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.